Page 516 - Biaxial Multiaxial Fatigue and Fracture
P. 516

500                        G. SHATIL AND N. ERSOY

             16.  Carpinteri,  A.  and  Spagnoli, A.  (2001) Multiaxial  high-cycle fatigue criterion  for  hard
                metals. Int. J. Fatigue, 23, 135-145.
             17.  Sines,  G.  J.,  (1981)  Fatigue Criteria under  Combined  Stresses or  Strains. J. of  Engng.
                Mater. & Technol., 13,82.
             18. Carpinteri, A., Spagnoli, A. and Vantadori, S. (2002) An apparoach to size effect in fatigue
                of metals using fractal theories. Fatigue Fract Engng. Mat. Struct., 2561 9-627.
             19.  Shatil, G. and Smith, D. J. (1996) Life Prediction and High-Strain Multiaxial Fatigue of an
                Engineering Component.  ESIS 21, pp. 499-51 1, Pineau, A., Cailletaud, G., and Lindle, T.
                C. Eds)  MEP, London.
             20.  Findley, W. M., Mathur, P. N., Szczepanski, E., Temel A. 0. (1961) Energy versus Stress
                Theories for  Combined  Stress - a  Fatigue Experiment Using a  Rotating Disk. J: Basic
                Engng., Trans. ASME, 83D.
             21.  Zamrik, S. Y.,  and Davis D. C. (1993) A Simple Test Method and Apparatus for Biaxial
                Fatigue and Crack Growth Studies. Advances in Multiaxial Fatigue, ASTM STP 1191 pp.
                204-219, McDowell, D. L. and Ellis, R., (Eds), American Society for Testing of Materials,
                Philedelphia.
             22.  Dowling, N. E. (1998) Mechanical Behaviour of  Materials, Prentice Hall.


             Appendix: NOMENCLATURE

                               Material constants for the Dang Van-Papadopoulos model
                               Norm of the gradient vector for the hydrostatic stress
                               Amplitude of the second invariant of the stress deviator tensor
                               Subsurface  model  strain  location  number  in  a particular  subsurface
                               strain path from the surface to a critical distance (i = n-I)
                               Subsurface model number of cycles and modified number of cycles to
                               failure at increment n
                               Subsurface model strain at a typical distance i and average strain at a
                               particular increment n under the surface
                               Subsurface model damage related to the strain gradient at each strain
                               increment and the modified damage parameter at increment n
                               Cycles to crack initiation
                               Maximum hydrostatic pressure during fatigue cycle
                               Nominal stress
                               Fully reversed tension-compression fatigue limit of smooth specimens
                               Effective distance and Weight function in Qilafku model
                               Effective strain energy density range
                               Material constant for Crossland criterion
                               Coordinates for defining the surface direction, subsurface radial
                               distance and the subsurface intersection plane, respectively.
                               Yield  strength,  Ultimate  strength  and  Shear  stress  amplitude,
                               respectively
   511   512   513   514   515   516   517   518   519   520   521