Page 515 - Biaxial Multiaxial Fatigue and Fracture
P. 515

Geomehy  Variation and Life Estimates of Biaxial Fatigue Specimens   499

             determining a  critical  path  and the  choice  of  multiaxial fatigue parameter.  However,
             initial results from further development of the model are in fair agreement with tests.


           ACKNOWLEDGEMENTS

           This  work  was  funded  by  the  UK Engineering and  Physical  Sciences Research  Council
           (EPSRC). The authors wish to thank the EPSRC for their support.


           REFERENCES

           1.  Tipton, S. M.  and Nelson, D. V.  (1985) Fatigue Life Predictions for a Notched Shaft in
              Combined Bending and  Torsion. ASTM STP  853, pp.  514-550,  American  Society for
              Testing of Materials, Philedelphia.
           2.  Miller, K. J. and Chandler, D. C. (1969) High Strain Torsion Fatigue of Solid and Tubular
              Specimens.  Proc. I Mech E, 25,433-448.
           3.  Shatil, G., Ellison, E. G. and Smith, D. J. (1995) Elastic Plastic Behaviour and Uniaxial
              Low Cycle Fatigue Life of Notched Specimens. Fatigue Fract. Engng Mat. Struct., 18,  2,
              235 - 245.
           4.  Shatil,  G.,  Smith,  D.  J.  and  Ellison,  E.  G.  (1994)  High  Strain  Biaxial  Fatigue of  a
              Structural Steel.  Fatigue Fract. Engng. Mat. Struct., 17,  2, 159 -170.
           5.  Flavernot, J. F. and Skalli, N. (1989) A Critical Depth Criterion for the Evaluation of Long
              Life  Fatigue  Strength  under  Multiaxial  Loading  and  a  Stress  Gradient.  Biaxial  and
              Multiaxial fatigue, EGF 3,355-365, Brown, M. W. and Miller, K. J. (Eds), MEP.
           6.  Shatil, G. and Smith, D. J. (1996) Life Prediction of Notched Specimens Using Multiaxial
              Surface and Subsurface Strain Analysis. J. Engng. Mater. & Technol., 118,529-534.
           7.  Munday,  E.G.,  and  Mitchell  L.D.  (1989)  The  Maximum-Distortion-Energy Ellipse  as
              Biaxial Fatigue Criterion in View of Gradient Effects. Experimental Mechanics, 29, 12-15.
           8.  Qilafku, G., hri, Z.,  Kadi, N.,  Gjonaj, M., and Pluvinage, G., 0999) Application of a
              New  Model  Proposal  for  Fatigue  Life  Prediction  on  Notches  and  Key-Seats. Int.  J.
              Fatigue, 21,753-760.
           9.  Papadopoulos, I. V.  and Panoskaltsis, V. P.  (1996) Gradient-Dependent Multiaxial High-
              Cycle Fatigue Criterion. ESIS 21, 349-364, Pineau, A.,  Cailletaud, G. and Lindley, T.C.
              (Eds), MEP, London.
           10.  Papadopoulos, I.  V. and Panoskaltsis, V.  P. (1996) “Invariant Formulation of a Gradient-
              Dependent Multiaxial High-Cycle Fatigue Criterion. Eng. Frac. Mech., 55, 5 13-528.
           11.  Bentachfine, B., Pluvinage, G., Gilgert, J., Azari, Z., and Bouami, D. (1999) Notch Effect
              in Low Cycle Fatigue. Int. J. Fatigue, 21,42 1-430.
           12.  Qdafku,  G.,  Kadi,  N.,  Dobranski, J.,  Azari,  Z.,  Gjonaj,  M.,  and Pluvinage, G.  (2001)
              Fatigue of Specimens Subjected to Combined Loading Role of Hydrostatic Pressure. Int. .I.
              Fatigue, 23,689-701.
           13.  Dang-Van  K.,  Griveau,  B.,  and  Message,  0. (1989)  high  Cycle  Fatigue  Analysis  in
              Mechanical Design.  Biaxial  and Multiaxial fatigue,  EGF  3, 479,  Brown,  M.  W.  and
              Miller, K. J. (Eds), MEP.
           14.  Brown,  M.  W.  and Miller, K. J. (1973)  A Theory for Fatigue Under Multiaxial  Stress-
              Strain Conditions. Proc. I Mech E, 187,745-755.
           15.  Lohr, R. D. and Ellison, E. G. (1980) A simple Theory for Low Cycle Multiaxial Fatigue.
              Fatigue Fract. Engng. Mat. Struct.,  3, 19-37.
   510   511   512   513   514   515   516   517   518   519   520