Page 75 - Big Data Analytics for Intelligent Healthcare Management
P. 75

68      CHAPTER 4 TRANSFER LEARNING AND SUPERVISED CLASSIFIER






              Table 4.5 10-fold Cross Validation Results
                                            Magnification Factor Wise 10-Fold Cross Validation Accuracy (%)
                                            40×          100×          200×         400×
              Feature Extractors  Classifiers
              ResNet-50          LR         94.17        94.41         94.09        92.03
                                 SVM        90.72        90.32         90.06        89.28
                                 K-NN       90.85        88.45         91.06        89.35
              Inception V3       LR         92.60        92.18         91.80        88.73
                                 SVM        92.54        90.04         90.55        89.00
                                 K-NN       91.97        89.06         89.93        87.42
              Inception ResNet V2  LR       92.98        92.13         92.86        88.80
                                 SVM        94.04        92.30         94.22        89.42
                                 K-NN       89.90        88.52         89.62        85.30
              Xception           LR         92.60        91.64         92.91        89.90
                                 SVM        90.40        88.88         90.80        87.15
                                 K-NN       89.71        88.88         88.26        85.44


                                                  Validation accuracy (%)
                 Xception+KNN
                 Xception+SVC
                  Xception+LR
                    IRV2+KNN
                    IRV2+SVC
                     IRV2+LR
                     IV3+KNN
                     IV3+SVM
                      IV3+LR
                   RN50+KNN
                   RN50+SVM
                     RN50+LR
                            87     88      89      90     91      92      93     94      95

             FIG. 4.7
             Validation accuracy graph for 40 .
             4.6.2.2 Validation accuracy of 100×
             Interpretation: On the 100  data, all of the combinations of feature extractors and classifiers gave
             validation accuracy above 88% and the ResNet50 and LR classifier gave the best cross validation score
             of 94.41% (Fig. 4.8).


             4.6.2.3 Validation accuracy of 200×
             Interpretation: On the 200  data, all of the combinations of feature extractors and classifiers gave a
             validation accuracy above 88% and the Inception ResNet V2 with Support Vector Classifier gave the
             best cross validation score of 94.22% (Fig. 4.9).
   70   71   72   73   74   75   76   77   78   79   80