Page 152 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 152

128  5 Multi-Enzyme Systems and Cascade Reactions Involving Cytochrome P450 Monooxygenases

                     53. Lewis, D.F. (2003) P450 structures and  reactions in human liver micro-
                        oxidative metabolism of xenobiotics.  somes. Drug Metab. Dispos., 28 (11),
                        Pharmacogenomics, 4 (4), 387–395.  1284–1290.
                     54. Shen, L., Fitzloff, J.F., and Cook, C.S.  62. Osborne, C.K. (1998) Tamoxifen in the
                        (2004) Differential enantioselectiv-  treatment of breast cancer. N. Engl. J.
                        ity and product-dependent activation  Med., 339 (22), 1609–1618.
                        and inhibition in metabolism of vera-  63. Fisher, B., Costantino, J.P.,
                        pamil by human CYP3As. Drug Metab.  Wickerham, D.L., Redmond, C.K.,
                        Dispos., 32 (2), 186–196.        Kavanah, M., Cronin, W.M., Vogel,
                     55. Lindberg, P., Nordberg, P., Alminger,  V., Robidoux, A., Dimitrov, N., Atkins,
                        T., Brandstrom, A., and Wallmark,  J., Daly, M., Wieand, S., Tan-Chiu,
                        B. (1986) The mechanism of action  E., Ford, L., and Wolmark, N. (1998)
                        of the gastric acid secretion inhibitor  Tamoxifen for prevention of breast
                        omeprazole. J. Med. Chem., 29 (8),  cancer: report of the National Surgical
                        1327–1329.                       Adjuvant Breast and Bowel Project P-1
                                                         Study. J. Natl. Cancer Inst., 90 (18),
                     56. Andersson, T., Hassan-Alin, M.,
                                                         1371–1388.
                        Hasselgren, G., Rohss, K., and Weidolf,
                                                      64. Borgna, J.L. and Rochefort, H. (1981)
                        L. (2001) Pharmacokinetic studies
                                                         Hydroxylated metabolites of tamoxifen
                        with esomeprazole, the (S)-isomer of
                        omeprazole. Clin. Pharmacokinet., 40  are formed in vivo and bound to estro-
                        (6), 411–426.                    gen receptor in target tissues. J. Biol.
                     57. Davydov, D.R. (2011) Microsomal  Chem., 256 (2), 859–868.
                                                      65. Jordan, V.C. (1982) Metabolites of
                        monooxygenase as a multienzyme sys-
                                                         tamoxifen in animals and man:
                        tem: the role of P450-P450 interactions.
                                                         identification, pharmacology, and
                        Expert Opin. Drug Metab. Toxicol., 7 (5),
                                                         significance. Breast Cancer Res. Treat., 2
                        543–558.
                                                         (2), 123–138.
                     58. Hashizume, T., Mise, M., Terauchi,  66. Desta, Z., Ward, B.A., Soukhova,
                        Y., Fujii, L.O.T., Miyazaki, H., and  N.V., and Flockhart, D.A. (2004) Com-
                        Inaba, T. (1998) N-Dealkylation and
                                                         prehensive evaluation of tamoxifen
                        hydroxylation of ebastine by human
                                                         sequential biotransformation by the
                        liver cytochrome P450. Drug Metab.
                                                         human cytochrome P450 system in
                        Dispos., 26 (6), 566–571.
                                                         vitro: prominent roles for CYP3A and
                     59. Hashizume, T., Imaoka, S., Mise, M.,
                                                         CYP2D6. J. Pharmacol. Exp. Ther., 310
                        Terauchi, Y., Fujii, T., Miyazaki, H.,
                                                         (3), 1062–1075.
                        Kamataki, T., and Funae, Y. (2002)
                                                      67. Jones, G., Strugnell, S.A., and DeLuca,
                        Involvement of CYP2J2 and CYP4F12
                                                         H.F. (1998) Current understanding of
                        in the metabolism of ebastine in
                                                         the molecular actions of vitamin D.
                        human intestinal microsomes. J. Phar-
                                                         Physiol. Rev., 78 (4), 1193–1231.
                        macol. Exp. Ther., 300 (1), 298–304.  68. Sawada, N., Sakaki, T., Ohta, M.,
                     60. Liu, K.H., Kim, M.G., Lee, D.J., Yoon,  and Inouye, K. (2000) Metabolism of
                        Y.J., Kim, M.J., Shon, J.H., Choi,  vitamin D(3) by human CYP27A1.
                        C.S., Choi, Y.K., Desta, Z., and Shin,  Biochem. Biophys. Res. Commun., 273
                        J.G. (2006) Characterization of ebas-  (3), 977–984.
                        tine, hydroxyebastine, and carebastine  69. Strushkevich, N., Usanov, S.A.,
                        metabolism by human liver micro-  Plotnikov, A.N., Jones, G., and Park,
                        somes and expressed cytochrome P450  H.W. (2008) Structural analysis of
                        enzymes: major roles for CYP2J2 and  CYP2R1 in complex with vitamin D3.
                        CYP3A. Drug Metab. Dispos., 34 (11),  J. Mol. Biol., 380 (1), 95–106.
                        1793–1797.                    70. Yamamoto, K., Uchida, E., Urushino,
                     61. Thijssen, H.H., Flinois, J.P., and  N., Sakaki, T., Kagawa, N., Sawada,
                        Beaune, P.H. (2000) Cytochrome   N., Kamakura, M., Kato, S., Inouye,
                        P4502C9 is the principal catalyst of  K., and Yamada, S. (2005) Identifi-
                        racemic acenocoumarol hydroxylation  cation of the amino acid residue of
   147   148   149   150   151   152   153   154   155   156   157