Page 150 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 150
126 5 Multi-Enzyme Systems and Cascade Reactions Involving Cytochrome P450 Monooxygenases
Biochim. Biophys. Acta, 1770 (3), monooxygenase CYP109B1 from Bacil-
330–344. lus subtilis. Appl. Microbiol. Biotechnol.,
19. Werck-Reichhart, D. and Feyereisen, 87 (2), 595–607.
R. (2000) Cytochromes P450: a 27. Nelson, D.R. (2011) Progress in tracing
success story. Genome Biol., 1 (6), the evolutionary paths of cytochrome
REVIEWS3003. P450. Biochim. Biophys. Acta, 1814 (1),
20. Werck-Reichhart, D., Bak, S., and 14–18.
Paquette, S. (2002) Cytochromes P450. 28. Schuler, M.A. and Werck-Reichhart, D.
The Arabidopsis Book, 1, e0028. (2003) Functional genomics of P450s.
21. de Vetten, N., ter Horst, J., van Schaik, Annu. Rev. Plant Biol., 54, 629–667.
H.P., de Boer, A., Mol, J., and Koes, 29. Guengerich, F.P., Sohl, C.D., and
R. (1999) A cytochrome b5 is required Chowdhury, G. (2011) Multi-step oxi-
for full activity of flavonoid 3’, 5’- dations catalyzed by cytochrome P450
hydroxylase, a cytochrome P450 enzymes: Processive vs. distributive
involved in the formation of blue kinetics and the issue of carbonyl oxi-
flower colors. Proc. Natl. Acad. Sci. dation in chemical mechanisms. Arch.
U.S.A., 96 (2), 778–783. Biochem. Biophys., 507 (1), 126–134.
22. Urlacher, V.B. and Girhard, M. (2012) 30. Mast, N., Annalora, A.J., Lodowski,
Cytochrome P450 monooxygenases: an D.T., Palczewski, K., Stout, C.D., and
update on perspectives for synthetic Pikuleva, I.A. (2011) Structural basis
application. Trends Biotechnol., 30 (1), for three-step sequential catalysis by
26–36. the cholesterol side chain cleavage
23. McLean, K.J., Sabri, M., Marshall, enzyme CYP11A1. J. Biol. Chem., 286
K.R., Lawson, R.J., Lewis, D.G., (7), 5607–5613.
Clift, D., Balding, P.R., Dunford, 31. Simpson, E.R. and Boyd, G.S. (1967)
A.J., Warman, A.J., McVey, J.P., The cholesterol side-chain cleavage
Quinn, A.M., Sutcliffe, M.J., Scrutton, system of bovine adrenal cortex. Eur. J.
N.S., and Munro, A.W. (2005) Bio- Biochem., 2 (3), 275–285.
diversity of cytochrome P450 redox 32. Orme-Johnson, N.R., Light,
systems. Biochem. Soc. Trans., 33 (Pt 4), D.R., White-Stevens, R.W., and
796–801. Orme-Johnson, W.H. (1979) Steroid
24. Chun, Y.J., Shimada, T., binding properties of beef adrenal
Sanchez-Ponce, R., Martin, M.V., cortical cytochrome P-450 which cat-
Lei, L., Zhao, B., Kelly, S.L., Waterman, alyzes the conversion of cholesterol
M.R., Lamb, D.C., and Guengerich, into pregnenolone. J. Biol. Chem., 254
F.P. (2007) Electron transport pathway (6), 2103–2111.
for a Streptomyces cytochrome P450: 33. Lambeth, J.D., Kitchen, S.E., Farooqui,
cytochrome P450 105D5-catalyzed fatty A.A., Tuckey, R., and Kamin, H. (1982)
acid hydroxylation in Streptomyces Cytochrome P-450scc-substrate interac-
coelicolor A3(2). J. Biol. Chem., 282 tions: studies of binding and catalytic
(24), 17486–17500. activity using hydroxy-cholesterols. J.
25. Ewen, K.M., Hannemann, F., Khatri, Biol. Chem., 257 (4), 1876–1884.
Y., Perlova, O., Kappl, R., Krug, D., 34. Imai, T., Yamazaki, T., and Kominami,
H¨ uttermann, J., M¨ uller, R., and S. (1998) Kinetic studies on bovine
Bernhardt, R. (2009) Genome min- cytochrome P45011 beta catalyzing
ing in Sorangium cellulosum So successive reactions from deoxycorti-
ce56: identification and characteri- costerone to aldosterone. Biochemistry,
zation of the homologous electron 37 (22), 8097–8104.
transfer proteins of a myxobacterial 35. Tagashira, H., Kominami, S., and
cytochrome P450. J. Biol. Chem., 284 Takemori, S. (1995) Kinetic studies
(42), 28590–28598. of cytochrome P-45017 alpha, lyase
26. Girhard, M., Klaus, T., Khatri, Y., dependent androstenedione formation
Bernhardt, R., and Urlacher, V.B. from progesterone. Biochemistry, 34
(2010) Characterization of the versatile (34), 10939–10945.