Page 154 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 154
130 5 Multi-Enzyme Systems and Cascade Reactions Involving Cytochrome P450 Monooxygenases
87. Tishkov, V.I., Galkin, A.G., Fedorchuk, of water-in-oil emulsions. J. Biosci.
V.V., Savitsky, P.A., Rojkova, A.M., Bioeng., 99 (1), 12–17.
Gieren, H., and Kula, M.R. (1999) 95. Buhler, B., Park, J.B., Blank, L.M.,
Pilot scale production and isolation and Schmid, A. (2008) NADH avail-
of recombinant NAD+-and NADP+- ability limits asymmetric biocatalytic
specific formate dehydrogenases. epoxidation in a growing recombinant
Biotechnol. Bioeng., 64 (2), 187–193. Escherichia coli strain. Appl. Environ.
88. Maurer, S., Urlacher, V., Schulze, H., Microbiol., 74 (5), 1436–1446.
and Schmid, R.D. (2003) Immobili- 96. Mouri, T., Michizoe, J., Ichinose, H.,
sation of P450 BM-3 and an NADP+ Kamiya, N., and Goto, M. (2006) A
cofactor recycling system: towards recombinant Escherichia coli whole
a technical application of heme- cell biocatalyst harboring a cytochrome
containing monooxygenases in fine P450cam monooxygenase system
chemical synthesis. Adv.Synth.Catal., coupled with enzymatic cofactor regen-
345, 802–810. eration. Appl. Microbiol. Biotechnol., 2
(3), 514–520.
89. Maurer, S.C., Kuhnel, K., Kaysser, L.A.,
97. Schewe, H., Kaup, B.A., and Schrader,
Eiben, S., Schmid, R.D., and Urlacher,
J. (2008) Improvement of P450(BM-3)
V.B. (2005) Catalytic hydroxylation in
whole-cell biocatalysis by integrating
biphasic systems using CYP102A1
mutants. Adv.Synth.Catal., 347 (7-8), heterologous cofactor regeneration
1090–1098. combining glucose facilitator and dehy-
90. Dohr, O., Paine, M.J., Friedberg, T., drogenase in E. coli. Appl. Microbiol.
Biotechnol., 78 (1), 55–65.
Roberts, G.C., and Wolf, C.R. (2001)
98. Lentz, O., Li, Q.S., Schwaneberg, U.,
Engineering of a functional human
Lutz-Wahl, S., Fischer, P., and Schmid,
NADH-dependent cytochrome P450
R.D. (2001) Modification of the fatty
system. Proc. Natl. Acad. Sci. U.S.A., 98 acid specificity of cytochrome P450
(1), 81–86.
91. Neeli, R., Roitel, O., Scrutton, N.S., and BM-3 from Bacillus megaterium by
directed evolution: a validated assay. J.
Munro, A.W. (2005) Switching pyridine
Mol. Catal. B: Enzym., 15, 123–133.
nucleotide specificity in P450 BM3:
99. Schewe, H., Holtmann, D., and
mechanistic analysis of the W1046H
Schrader, J. (2009) P450(BM-3)-
and W1046A enzymes. J. Biol. Chem.,
catalyzed whole-cell biotransformation
280 (18), 17634–17644.
of alpha-pinene with recombinant
92. Andreadeli, A., Platis, D., Tishkov,
Escherichia coli in an aqueous-organic
V., Popov, V., and Labrou, N.E.
two-phase system. Appl. Microbiol.
(2008) Structure-guided alteration of
Biotechnol., 83 (5), 849–857.
coenzyme specificity of formate dehy-
100. Berg, A., Ingelman-Sundberg, M., and
drogenase by saturation mutagenesis to
Gustafsson, J.A. (1979) Purification
enable efficient utilization of NADP+. and characterization of cytochrome
FEBS J., 275 (15), 3859–3869. P-450meg. J. Biol. Chem., 254 (12),
93. Mouri, T., Shimizu, T., Kamiya, N., 5264–5271.
Goto, M., and Ichinose, H. (2009) 101. Berg, A., Ingelman-Sundberg, M.,
Design of a cytochrome P450BM3 and Gustafsson, J.A. (1979) Isolation
reaction system linked by two-step and characterization of cytochrome P-
cofactor regeneration catalyzed by a 450meg. Acta Biol. Med. Ger., 38 (2-3),
soluble transhydrogenase and glycerol 333–344.
dehydrogenase. Biotechnol. Prog., 25 (5), 102. Simgen, B., Contzen, J., Schwarzer,
1372–1378. R., Bernhardt, R., and Jung, C. (2000)
94. Michizoe, J., Ichinose, H., Kamiya, N., Substrate binding to 15beta-hydroxylase
Maruyama, T., and Goto, M. (2005) (CYP106A2) probed by FT infrared
Functionalization of the cytochrome spectroscopic studies of the iron ligand
P450cam monooxygenase system in CO stretch vibration. Biochem. Biophys.
the cell-like aqueous compartments Res. Commun., 269 (3), 737–742.