Page 149 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 149
References 125
for example, carboxylic acid functionalities. In future, cascade systems employing
multiple P450s could become attractive as well, because a combination of different
P450s may provide toolboxes for the synthesis of a broad spectrum of various
intermediates.
We anticipate that artificial enzyme cascades involving P450s will develop
into important topics of biocatalysis and synthetic biology. However, substantial
research efforts still need to be undertaken in this area in order to create various
P450 cascade types with the required robustness for industrial application.
References
1. Drauz, K. and Waldmann, H. (eds) 11. Koschorreck, K., von B¨ uhler, C.J.,
(2002) Hydrolases in Organic Synthesis, Schulz, S., and Urlacher, V.B. (2012)
2nd edn, Wiley-VCH Verlag GmbH, in Protein Engineering Handbook, 1st
Weinheim. edn, vol. 3 (eds S. Lutz and U.T.
2. Liese, A., Seelbach, K., and Wandrey, Bornscheuer), Wiley-VCH Verlag
C. (eds) (2006) Industrial Biotransfor- GmbH, Weinheim, pp. 327–362.
mations, 2nd edn, Wiley-VCH Verlag 12. Sligar, S.G. (1976) Coupling of spin,
GmbH, Weinheim. substrate, and redox equilibria in
3. Schmid, R.D. (ed) (2006) Taschenat- cytochrome P450. Biochemistry, 15 (24),
las der Biotechnologie und Gentechnik, 5399–5406.
2nd edn, Wiley-VCH Verlag GmbH, 13. Jin, S., Bryson, T.A., and Dawson,
Weinheim. J.H. (2004) Hydroperoxoferric heme
4. Faber, K. (2004) Biotransformations in intermediate as a second electrophilic
Organic Chemistry, 5th edn, Springer- oxidant in cytochrome P450-catalyzed
Verlag, Berlin. reactions. J. Biol.Inorg.Chem., 9 (6),
5. Chen, M.S. and White, M.C. (2007) A 644–653.
predictably selective aliphatic C-H oxi- 14. Sligar, S.G., Makris, T.M., and
dation reaction for complex molecule Denisov, I.G. (2005) Thirty years
synthesis. Science, 318 (5851), 783–787. of microbial P450 monooxygenase
6. Godula, K. and Sames, D. (2006) C-H research: peroxo-heme intermediates –
bond functionalization in complex the central bus station in heme oxyge-
organic synthesis. Science, 312 (5770), nase catalysis. Biochem. Biophys. Res.
67–72. Commun., 338 (1), 346–354.
7. Newhouse, T. and Baran, P.S. (2011) 15. Cirino, P.C. and Arnold, F.H. (2003) A
If C-H bonds could talk: selective C-H self-sufficient peroxide-driven hydrox-
bond oxidation. Angew. Chem. Int. Ed., ylation biocatalyst. Angew. Chem. Int.
50 (15), 3362–3374. Ed., 42 (28), 3299–3301.
8. Sono, M., Roach, M.P., Coulter, E.D., 16. Joo, H., Lin, Z., and Arnold, F.H.
and Dawson, J.H. (1996) Heme- (1999) Laboratory evolution of
containing oxygenases. Chem. Rev., peroxide-mediated cytochrome P450
96 (7), 2841–2888. hydroxylation. Nature, 399 (6737),
9. Isin, E.M. and Guengerich, F.P. 670–673.
(2007) Complex reactions catalyzed 17. Bernhardt, R. (2004) Optimized
by cytochrome P450 enzymes. Biochim. chimeragenesis; creating diverse p450
Biophys. Acta, 1770 (3), 314–329. functions. Chem. Biol., 11 (3), 287–288.
10. Guengerich, F.P. and Munro, A.W. 18. Hannemann, F., Bichet, A., Ewen,
(2013) Unusual cytochrome p450 K.M., and Bernhardt, R. (2007)
enzymes and reactions. J. Biol. Chem., Cytochrome P450 systems –biological
288 (24), 17065–17073. variations of electron transport chains.