Page 179 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 179

References  155

                26. Cobucci-Ponzano, B., Strazzulli, A.,  38. Malik, V. and Black, G.W. (2012) Struc-
                   Rossi, M., and Moracci, M. (2011) Gly-  tural, functional, and mutagenesis
                   cosynthases in biocatalysis. Adv. Synth.  studies of UDP-glycosyltransferases.
                   Catal., 353, 2881.              Adv. Protein Chem. Struct. Biol., 87,
                27. Kittl, R. and Withers, S.G. (2010) New  87–115.
                   approaches to enzymatic glycoside  39. Williams, G.J., Goff, R.D., Zhang,
                   synthesis through directed evolution.  C., and Thorson, J.S. (2008) Opti-
                   Carbohydr. Res., 345, 1272–1279.  mizing glycosyltransferase specificity
                28. Blanchard, S. and Thorson, J.S. (2006)  via ‘‘hot spot’’ saturation mutagene-
                   Enzymatic tools for engineering natu-  sis presents a catalyst for novobiocin
                   ral product glycosylation. Curr. Opin.  glycorandomization. Chem. Biol., 15,
                   Chem. Biol., 10, 263–271.       393–401.
                29. Lairson, L.L., Henrissat, B., Davies,  40. Williams, G.J., Zhang, C., and
                   G.J., and Withers, S.G. (2008) Glycosyl-  Thorson, J.S. (2007) Expanding the
                   transferases: structures, functions, and  promiscuity of a natural-product gly-
                                                   cosyltransferase by directed evolution.
                   mechanisms. Annu. Rev. Biochem., 77,
                                                   Nat. Chem. Biol., 3, 657–662.
                   521–555.
                                                41. Guangyu, Y. and Stephen, G.W. (2009)
                30. Young, W.W. Jr., (2004) Organization
                                                   Ultrahigh-throughput FACS-based
                   of Golgi glycosyltransferases in mem-
                   branes: complexity via complexes. J.  screening for directed enzyme evolu-
                   Membr. Biol., 198, 1–13.        tion. ChemBioChem, 10, 2704–2715.
                31. Zhang, C., Griffith, B.R., Fu, Q.,  42. Yang, G., Rich, J.R., Gilbert, M.,
                                                   Wakarchuk, W.W., Feng, Y., and
                   Albermann, C.,Fu, X.,Lee,I.-K.,
                                                   Withers, S.G. (2010) Fluorescence
                   Li, L., and Thorson, J.S. (2006) Exploit-
                                                   activated cell sorting as a general ultra-
                   ing the reversibility of natural product
                                                   high-throughput screening method
                   glycosyltransferase-catalyzed reactions.  for directed evolution of glycosyl-
                   Science, 313, 1291–1294.
                32. Seibel, J., Buchholz, K., and Derek, H.  transferases. J. Am. Chem. Soc., 132,
                                                   10570–10577.
                   (2010) Advances in Carbohydrate Chem-
                                                43. Engels, L. and Elling, L. (2012) in
                   istry And Biochemistry, Academic Press,
                                                   Carbohydrate-Modifying Biocatalysts (ed
                   pp. 101–138.
                                                   P. Grunwald), Stanford Publishing,
                33. Choi, S.H., Kim, H.S., Yoon, Y.J.,
                                                   Stanford, pp. 237–251.
                   Kim, D.-M., and Lee, E.Y. (2012) Gly-
                                                44. Bojarov´ a, P. and Kren, V. (2009)
                   cosyltransferase and its application to
                                                   Glycosidases: a key to tailored car-
                   glycodiversification of natural prod-
                                                   bohydrates. Trends Biotechnol., 27,
                   ucts. J. Ind. Eng. Chem. (Seoul), 18,
                                                   199–209.
                   1208–1212.
                                                45. van Rantwijk, F. Woudenberg-van
                34. Weijers, C.A., Franssen, M.C., and
                                                   Oosterom, M., and Sheldon, R.A.
                   Visser, G.M. (2008) Glycosyltransferase-  (1999) Glycosidase-catalysed synthesis
                   catalyzed synthesis of bioactive  of alkyl glycosides. J. Mol. Catal. B:
                   oligosaccharides. Biotechnol. Adv.,  Enzym., 6, 511–532.
                   26, 436–456.                 46. Kamerke, C., Pattky, M., Huhn, C.,
                35. Palcic, M.M. (2011) Glycosyltrans-  and Elling, L. (2012) Synthesis of
                   ferases as biocatalysts. Curr. Opin.  UDP-activated oligosaccharides with
                   Chem. Biol., 15, 226–233.       commercial beta-galactosidase from
                36. Coutinho, P.M., Deleury, E., Davies,  Bacillus circulans under microwave
                   G.J., and Henrissat, B. (2003) An evolv-  irradiation. J. Mol. Catal. B: Enzym., 79,
                   ing hierarchical family classification for  27–34.
                   glycosyltransferases. J. Mol. Biol., 328,  47. Nieder, V., Kutzer, M., Kren, V.,
                   307–317.                        Guti´ errez Gallego, R., Kamerling,
                37. Kapitonov, D. and Yu, R.K. (1999) Con-  J.P., and Elling, L. (2004) Screen-
                   served domains of glycosyltransferases.  ing and characterization of β-N-
                   Glycobiology, 9, 961–978.       acetylhexosaminidases for the synthesis
   174   175   176   177   178   179   180   181   182   183   184