Page 179 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 179
References 155
26. Cobucci-Ponzano, B., Strazzulli, A., 38. Malik, V. and Black, G.W. (2012) Struc-
Rossi, M., and Moracci, M. (2011) Gly- tural, functional, and mutagenesis
cosynthases in biocatalysis. Adv. Synth. studies of UDP-glycosyltransferases.
Catal., 353, 2881. Adv. Protein Chem. Struct. Biol., 87,
27. Kittl, R. and Withers, S.G. (2010) New 87–115.
approaches to enzymatic glycoside 39. Williams, G.J., Goff, R.D., Zhang,
synthesis through directed evolution. C., and Thorson, J.S. (2008) Opti-
Carbohydr. Res., 345, 1272–1279. mizing glycosyltransferase specificity
28. Blanchard, S. and Thorson, J.S. (2006) via ‘‘hot spot’’ saturation mutagene-
Enzymatic tools for engineering natu- sis presents a catalyst for novobiocin
ral product glycosylation. Curr. Opin. glycorandomization. Chem. Biol., 15,
Chem. Biol., 10, 263–271. 393–401.
29. Lairson, L.L., Henrissat, B., Davies, 40. Williams, G.J., Zhang, C., and
G.J., and Withers, S.G. (2008) Glycosyl- Thorson, J.S. (2007) Expanding the
transferases: structures, functions, and promiscuity of a natural-product gly-
cosyltransferase by directed evolution.
mechanisms. Annu. Rev. Biochem., 77,
Nat. Chem. Biol., 3, 657–662.
521–555.
41. Guangyu, Y. and Stephen, G.W. (2009)
30. Young, W.W. Jr., (2004) Organization
Ultrahigh-throughput FACS-based
of Golgi glycosyltransferases in mem-
branes: complexity via complexes. J. screening for directed enzyme evolu-
Membr. Biol., 198, 1–13. tion. ChemBioChem, 10, 2704–2715.
31. Zhang, C., Griffith, B.R., Fu, Q., 42. Yang, G., Rich, J.R., Gilbert, M.,
Wakarchuk, W.W., Feng, Y., and
Albermann, C.,Fu, X.,Lee,I.-K.,
Withers, S.G. (2010) Fluorescence
Li, L., and Thorson, J.S. (2006) Exploit-
activated cell sorting as a general ultra-
ing the reversibility of natural product
high-throughput screening method
glycosyltransferase-catalyzed reactions. for directed evolution of glycosyl-
Science, 313, 1291–1294.
32. Seibel, J., Buchholz, K., and Derek, H. transferases. J. Am. Chem. Soc., 132,
10570–10577.
(2010) Advances in Carbohydrate Chem-
43. Engels, L. and Elling, L. (2012) in
istry And Biochemistry, Academic Press,
Carbohydrate-Modifying Biocatalysts (ed
pp. 101–138.
P. Grunwald), Stanford Publishing,
33. Choi, S.H., Kim, H.S., Yoon, Y.J.,
Stanford, pp. 237–251.
Kim, D.-M., and Lee, E.Y. (2012) Gly-
44. Bojarov´ a, P. and Kren, V. (2009)
cosyltransferase and its application to
Glycosidases: a key to tailored car-
glycodiversification of natural prod-
bohydrates. Trends Biotechnol., 27,
ucts. J. Ind. Eng. Chem. (Seoul), 18,
199–209.
1208–1212.
45. van Rantwijk, F. Woudenberg-van
34. Weijers, C.A., Franssen, M.C., and
Oosterom, M., and Sheldon, R.A.
Visser, G.M. (2008) Glycosyltransferase- (1999) Glycosidase-catalysed synthesis
catalyzed synthesis of bioactive of alkyl glycosides. J. Mol. Catal. B:
oligosaccharides. Biotechnol. Adv., Enzym., 6, 511–532.
26, 436–456. 46. Kamerke, C., Pattky, M., Huhn, C.,
35. Palcic, M.M. (2011) Glycosyltrans- and Elling, L. (2012) Synthesis of
ferases as biocatalysts. Curr. Opin. UDP-activated oligosaccharides with
Chem. Biol., 15, 226–233. commercial beta-galactosidase from
36. Coutinho, P.M., Deleury, E., Davies, Bacillus circulans under microwave
G.J., and Henrissat, B. (2003) An evolv- irradiation. J. Mol. Catal. B: Enzym., 79,
ing hierarchical family classification for 27–34.
glycosyltransferases. J. Mol. Biol., 328, 47. Nieder, V., Kutzer, M., Kren, V.,
307–317. Guti´ errez Gallego, R., Kamerling,
37. Kapitonov, D. and Yu, R.K. (1999) Con- J.P., and Elling, L. (2004) Screen-
served domains of glycosyltransferases. ing and characterization of β-N-
Glycobiology, 9, 961–978. acetylhexosaminidases for the synthesis