Page 182 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 182
158 6 Chemo-Enzymatic Cascade Reactions for the Synthesis of Glycoconjugates
nucleotide sugars. Adv.Synth.Catal., oligosaccharides with both anti-factor
349, 314–318. Xa and anti-factor IIa activities. J. Biol.
85. Sauerzapfe, B., Krenek, K., Schmiedel, Chem., 287, 29054–29061.
J., Wakarchuk, W.W., Pelantova, 93. Chavaroche, A.E., Broek, L.M., Boeriu,
H., Kren, V., and Elling, L. (2009) C., and Eggink, G. (2012) Synthe-
Chemo-enzymatic synthesis of poly- sis of heparosan oligosaccharides by
N-acetyllactosamine (poly-LacNAc) Pasteurella multocida PmHS2 single-
structures and their characterization action transferases. Appl. Microbiol.
for CGL2-galectin-mediated binding Biotechnol., 95, 1199–1210.
of ECM glycoproteins to biomaterial 94. DeAngelis, P.L., Oatman, L.C., and
surfaces. Glycoconj. J., 26, 141–159. Gay, D.F. (2003) Rapid chemoen-
86. Adamiak, K., Anders, T., Henze, M., zymatic synthesis of monodisperse
Keul, H., Moller, M., and Elling, L. hyaluronan oligosaccharides with
(2012) Chemo-enzymatic synthesis immobilized enzyme reactors. J. Biol.
of functionalized oligomers of N- Chem., 278, 35199–35203.
acetyllactosamine glycan derivatives
95. Serna, S., Etxebarria, J., Ruiz, N.,
and their immobilization on biomate-
Martin-Lomas, M., and Reichardt,
rial surfaces. J. Mol. Catal. B: Enzym.,
N.-C. (2010) Construction of N-
84, 108–114. glycan microarrays by using modular
87. Pukin, A.V., Florack, D.E.A., Brochu, synthesis and on-chip nanoscale enzy-
D., van Lagen, B., Visser, G.M., matic glycosylation. Chem. Eur. J., 16,
Wennekes, T., Gilbert, M., and Zuilhof, 13163–13175.
H. (2011) Chemoenzymatic synthe-
96. Ono, Y., Kitajima, M., Daikoku, S.,
sis of biotin-appended analogues of
Shiroya, T., Nishihara, S., Kanie, Y.,
gangliosides GM2, GM1, GD1a and
Suzuki, K., Goto, S., and Kanie, O.
GalNAc-GD1a for solid-phase applica- (2008) Sequential enzymatic glycosyl-
tions and improved ELISA tests. Org. transfer reactions on a microfluidic
Biomol. Chem., 9, 5809–5815.
88. Susini, S., Jeanneau, C., Mathieu, S., device: synthesis of a glycosaminogly-
can linkage region tetrasaccharide. Lab
Carmona, S., and El-Battari, A. (2011)
Chip, 8, 2168–2173.
A glycosyltransferase-enriched recon-
97. Martin, J.G., Gupta, M., Xu, Y., Akella,
stituted membrane system for the
S., Liu, J., Dordick, J.S., and Linhardt,
synthesis of branched O-linked gly-
R.J. (2009) Toward an artificial Golgi:
cans in vitro. Biochim. Biophys. Acta:
redesigning the biological activities of
Biomembr., 1808, 1509–1519.
heparan sulfate on a digital microflu-
89. Liu, R., Xu, Y., Chen, M., We¨ ıwer, M.,
idic chip. J. Am. Chem. Soc., 131,
Zhou, X., Bridges, A.S., DeAngelis,
11041–11048.
P.L., Zhang, Q., Linhardt, R.J., and
98. Rupprath, C., Kopp, M., Hirtz, D.,
Liu, J. (2010) Chemoenzymatic design
of heparan sulfate oligosaccharides. J. M¨ uller, R., and Elling, L. (2007)
Biol. Chem., 285, 34240–34249. An enzyme module system for in
90. Masuko, S. and Linhardt, R.J. (2012) situ regeneration of deoxythymi-
′
Chemoenzymatic synthesis of the next dine 5 -diphosphate (dTDP)-activated
generation of ultralow MW heparin deoxy sugars. Adv. Synth. Catal., 349,
therapeutics. Future Med. Chem., 4, 1489–1496.
289–296. 99. Brinkmann, N., Malissard, M., Ramuz,
91. Xu, Y., Masuko, S., Takieddin, M., M., Romer, U., Schumacher, T.,
Xu, H., Liu, R., Jing, J., Mousa, Berger, E.G., Elling, L., Wandrey, C.,
S.A., Linhardt, R.J., and Liu, J. (2011) and Liese, A. (2001) Chemo-enzymatic
Chemoenzymatic synthesis of homo- synthesis of the Galili epitope
geneous ultralow molecular weight Gal(alpha)(1–>3)Galbeta(1–>4)GlcNAc
heparins. Science, 334, 498–501. on a homogeneously soluble PEG poly-
92. Xu, Y., Pempe, E.H., and Liu, J. (2012) mer by a multi-enzyme system. Bioorg.
Chemoenzymatic synthesis of heparin Med. Chem. Lett., 11, 2503–2506.