Page 183 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 183
References 159
100. Hokke,C., Zervosen,A., Elling,L., 109. Yang, Y.-H., Kang, Y.-B., Kim, D.-H.,
Joziasse, D., and Eijnden, D. (1996) Lee, T.-H., Park, S.-H., Lee, K., Yoo,
One-pot enzymatic synthesis of the D., Liou, K.-K., Lee, H.-C., Sohng, J.-K.
Galα1→3Galβ1→4GlcNAc sequence et al. (2010) One-pot enzymatic syn-
within situ UDP-Gal regeneration. thesis of deoxy-thymidine-diphosphate
Glycoconjugate J., 13, 687–692. (TDP)-2-deoxy-α-d-glucose using phos-
101. Zervosen, A. and Elling, L. (1996) A phomannomutase. J. Mol. Catal. B:
novel three-enzyme reaction cycle for Enzym., 62, 282–287.
the synthesis of N-acetyllactosamine 110. Seo, K.-C., Kwon, Y.-G., Kim, D.-H.,
with in situ regeneration of uridine Jang, I.-S., Cho, J.-W., and Chung,
′
5 -diphosphate glucose and uridine S.-K. (2009) Chemoenzymatic syntheses
′
5 -diphosphate galactose. J. Am. Chem. of carbasugar analogues of nucleoside
Soc., 118, 1836–1840. diphosphate sugars: UDP-carba-Gal,
102. Terasaka, K., Mizutani, Y., Nagatsu, A., UDP-carba-GlcNAc, UDP-carba-Glc,
and Mizukami, H. (2012) In situ UDP- and GDP-carba-Man. Chem. Commun.
glucose regeneration unravels diverse (Cambridge, U.K.), 1733–1735.
functions of plant secondary product
111. Chen, Y., Thon, V., Li, Y., Yu, H.,
glycosyltransferases. FEBS Lett., 586,
Ding, L., Lau, K., Qu, J., Hie, L., and
4344–4350. Chen, X. (2011) One-pot three-enzyme
103. Masada, S., Kawase, Y., Nagatoshi,
synthesis of UDP-GlcNAc derivatives.
M., Oguchi, Y., Terasaka, K., and Chem. Commun. (Cambridge, U.K.), 47,
Mizukami, H. (2007) An efficient
10815–10817.
chemoenzymatic production of small
112. Muthana, M.M., Qu, J., Li, Y., Zhang,
molecule glucosides with in situ UDP-
L., Yu, H., Ding, L., Malekan, H., and
glucose recycling. FEBS Lett., 581,
Chen, X. (2012) Efficient one-pot mul-
2562–2566.
tienzyme synthesis of UDP-sugars
104. Kopp, M., Rupprath, C., Irschik, H., using a promiscuous UDP-sugar
Bechthold, A., Elling, L., and M¨ uller, R. pyrophosphorylase from Bifidobac-
(2007) SorF, a glycosyltransferase with
terium longum (BLUSP). Chem.
promiscuous donor substrate specificity
Commun. (Cambridge, U.K.), 48,
in vitro. ChemBioChem, 8, 813–819.
2728–2730.
105. Gantt, R.W., Peltier-Pain, P.,
113. Bojarov´ a, P., Kˇ renek, K., Wetjen,
Cournoyer, W.J., and Thorson, J.S.
(2011) Using simple donors to drive K., Adamiak, K., Pelantov´ a, H.,
the equilibria of glycosyltransferase- Bezouˇ ska, K., Elling, L., and Kˇ ren,
V. (2009) Synthesis of LacdiNAc-
catalyzed reactions. Nat. Chem. Biol., 7,
685–691. terminated glycoconjugates by mutant
galactosyltransferase – A way to new
106. Gantt, R.W., Peltier-Pain, P., Singh,
S., Zhou, M., and Thorson, J.S. glycodrugs and materials. Glycobiology,
(2013) Broadening the scope of 19, 509–517.
glycosyltransferase-catalyzed sugar 114. Drozdova, A., Bojarova, P., Krenek,
nucleotide synthesis. Proc. Natl. Acad. K., Weignerova, L., Henssen, B.,
Sci. U.S.A., 110, 7648–7653. Elling, L., Christensen, H., Jensen,
107. B¨ ulter, T. and Elling, L. (2000) Enzy- H.H., Pelantova, H., Kuzma, M. et al.
matic synthesis of UDP-galactose on a (2011) Enzymatic synthesis of dimeric
gram scale. J. Mol. Catal. B: Enzym., 8, glycomimetic ligands of NK cell acti-
281–284. vation receptors. Carbohydr. Res., 346,
108. Liu, Z., Zhang, J., Chen, X., and Wang, 1599–1609.
P.G. (2002) Combined biosynthetic 115. Van de Vijver, K.K., Deelder, A.M.,
pathway for de novo production of Jacobs, W., Van Marck, E.A., and
UDP-galactose: catalysis with multi- Hokke, C.H. (2006) LacdiNAc- and
ple enzymes immobilized on agarose LacNAc-containing glycans induce
beads. ChemBioChem, 3, 348–355. granulomas in an in vivo model for