Page 183 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 183

References  159

               100. Hokke,C., Zervosen,A., Elling,L.,  109. Yang, Y.-H., Kang, Y.-B., Kim, D.-H.,
                   Joziasse, D., and Eijnden, D. (1996)  Lee, T.-H., Park, S.-H., Lee, K., Yoo,
                   One-pot enzymatic synthesis of the  D., Liou, K.-K., Lee, H.-C., Sohng, J.-K.
                   Galα1→3Galβ1→4GlcNAc sequence   et al. (2010) One-pot enzymatic syn-
                   within situ UDP-Gal regeneration.  thesis of deoxy-thymidine-diphosphate
                   Glycoconjugate J., 13, 687–692.  (TDP)-2-deoxy-α-d-glucose using phos-
               101. Zervosen, A. and Elling, L. (1996) A  phomannomutase. J. Mol. Catal. B:
                   novel three-enzyme reaction cycle for  Enzym., 62, 282–287.
                   the synthesis of N-acetyllactosamine  110. Seo, K.-C., Kwon, Y.-G., Kim, D.-H.,
                   with in situ regeneration of uridine  Jang, I.-S., Cho, J.-W., and Chung,
                   ′
                   5 -diphosphate glucose and uridine  S.-K. (2009) Chemoenzymatic syntheses
                   ′
                   5 -diphosphate galactose. J. Am. Chem.  of carbasugar analogues of nucleoside
                   Soc., 118, 1836–1840.           diphosphate sugars: UDP-carba-Gal,
               102. Terasaka, K., Mizutani, Y., Nagatsu, A.,  UDP-carba-GlcNAc, UDP-carba-Glc,
                   and Mizukami, H. (2012) In situ UDP-  and GDP-carba-Man. Chem. Commun.
                   glucose regeneration unravels diverse  (Cambridge, U.K.), 1733–1735.
                   functions of plant secondary product
                                               111. Chen, Y., Thon, V., Li, Y., Yu, H.,
                   glycosyltransferases. FEBS Lett., 586,
                                                   Ding, L., Lau, K., Qu, J., Hie, L., and
                   4344–4350.                      Chen, X. (2011) One-pot three-enzyme
               103. Masada, S., Kawase, Y., Nagatoshi,
                                                   synthesis of UDP-GlcNAc derivatives.
                   M., Oguchi, Y., Terasaka, K., and  Chem. Commun. (Cambridge, U.K.), 47,
                   Mizukami, H. (2007) An efficient
                                                   10815–10817.
                   chemoenzymatic production of small
                                               112. Muthana, M.M., Qu, J., Li, Y., Zhang,
                   molecule glucosides with in situ UDP-
                                                   L., Yu, H., Ding, L., Malekan, H., and
                   glucose recycling. FEBS Lett., 581,
                                                   Chen, X. (2012) Efficient one-pot mul-
                   2562–2566.
                                                   tienzyme synthesis of UDP-sugars
               104. Kopp, M., Rupprath, C., Irschik, H.,  using a promiscuous UDP-sugar
                   Bechthold, A., Elling, L., and M¨ uller, R.  pyrophosphorylase from Bifidobac-
                   (2007) SorF, a glycosyltransferase with
                                                   terium longum (BLUSP). Chem.
                   promiscuous donor substrate specificity
                                                   Commun. (Cambridge, U.K.), 48,
                   in vitro. ChemBioChem, 8, 813–819.
                                                   2728–2730.
               105. Gantt, R.W., Peltier-Pain, P.,
                                               113. Bojarov´ a, P., Kˇ renek, K., Wetjen,
                   Cournoyer, W.J., and Thorson, J.S.
                   (2011) Using simple donors to drive  K., Adamiak, K., Pelantov´ a, H.,
                   the equilibria of glycosyltransferase-  Bezouˇ ska, K., Elling, L., and Kˇ ren,
                                                   V. (2009) Synthesis of LacdiNAc-
                   catalyzed reactions. Nat. Chem. Biol., 7,
                   685–691.                        terminated glycoconjugates by mutant
                                                   galactosyltransferase – A way to new
               106. Gantt, R.W., Peltier-Pain, P., Singh,
                   S., Zhou, M., and Thorson, J.S.  glycodrugs and materials. Glycobiology,
                   (2013) Broadening the scope of  19, 509–517.
                   glycosyltransferase-catalyzed sugar  114. Drozdova, A., Bojarova, P., Krenek,
                   nucleotide synthesis. Proc. Natl. Acad.  K., Weignerova, L., Henssen, B.,
                   Sci. U.S.A., 110, 7648–7653.    Elling, L., Christensen, H., Jensen,
               107. B¨ ulter, T. and Elling, L. (2000) Enzy-  H.H., Pelantova, H., Kuzma, M. et al.
                   matic synthesis of UDP-galactose on a  (2011) Enzymatic synthesis of dimeric
                   gram scale. J. Mol. Catal. B: Enzym., 8,  glycomimetic ligands of NK cell acti-
                   281–284.                        vation receptors. Carbohydr. Res., 346,
               108. Liu, Z., Zhang, J., Chen, X., and Wang,  1599–1609.
                   P.G. (2002) Combined biosynthetic  115. Van de Vijver, K.K., Deelder, A.M.,
                   pathway for de novo production of  Jacobs, W., Van Marck, E.A., and
                   UDP-galactose: catalysis with multi-  Hokke, C.H. (2006) LacdiNAc- and
                   ple enzymes immobilized on agarose  LacNAc-containing glycans induce
                   beads. ChemBioChem, 3, 348–355.  granulomas in an in vivo model for
   178   179   180   181   182   183   184   185   186   187   188