Page 181 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 181

References  157

                64. Kim, Y.W., Chen, H.M., Kim, J.H., and  75. Li, Y., Cheng, Y., and Xu, T. (2007)
                   Withers, S.G. (2006) Catalytic prop-  Design, synthesis and potent phar-
                   erties of a mutant beta-galactosidase  maceutical applications of glycoden-
                   from Xanthomonas manihotis      drimers: a mini review. Curr. Drug
                   engineered to synthesize galactosyl-  Discovery Technol., 4, 246–254.
                   thio-beta-1,3 and -beta-1,4-glycosides.  76. Ribeiro Morais, G., Falconer, R.A., and
                   FEBS Lett., 580, 4377–4381.     Santos, I. (2013) Carbohydrate-based
                65. Kim, Y.-W., Chen, H.-M., Kim, J.H.,  molecules for molecular imaging in
                   M¨ ullegger, J., Mahuran, D., and  nuclear medicine. Eur. J. Org. Chem.,
                   Withers, S.G. (2007) Thioglycoligase-  2013, 1401–1414.
                                                77. Wong, S.Y.C. (1995) Neoglycocon-
                   based assembly of thiodisaccharides:
                                                   jugates and their applications in
                   screening as β-galactosidase inhibitors.
                                                   glycobiology. Curr. Opin. Struct. Biol.,
                   ChemBioChem, 8, 1495–1499.
                                                   5, 599–604.
                66. Kim, Y.-W., Lee, S.S., Warren, R.A.J.,
                                                78. Nicolaou, K.C., Edmonds, D.J., and
                   and Withers, S.G. (2004) Directed
                                                   Bulger, P.G. (2006) Cascade reactions
                   evolution of a glycosynthase from
                                                   in total synthesis. Angew. Chem. Int.
                   agrobacterium sp. Increases its catalytic
                                                   Ed., 45, 7134–7186.
                   activity dramatically and expands its
                                                79. Ricca, E., Brucher, B., and
                   substrate repertoire. J. Biol. Chem., 279,  Schrittwieser, J.H. (2011) Multi-
                   42787–42793.                    enzymatic cascade reactions: overview
                67. Grondal, C., Jeanty, M., and Enders,  and perspectives. Adv.Synth.Catal.,
                   D. (2010) Organocatalytic cascade reac-  353, 2239–2262.
                   tions as a new tool in total synthesis.  80. Tietze, L.F., Brasche, G., and Gericke,
                   Nat. Chem., 2, 167–178.         K.M. (2006) Domino Reactions in
                68. Bruggink, A., Schoevaart, R., and  Organic Synthesis, Wiley-VCH Verlag
                   Kieboom, T. (2003) Concepts of nature  GmbH & Co. KGaA, pp. 529–541.
                   in organic synthesis: cascade catalysis  81. Amann, S., Drager, G., Rupprath, C.,
                   and multistep conversions in concert.  Kirschning, A., and Elling, L. (2001)
                   Org. Process Res. Dev., 7, 622–640.  (Chemo)enzymatic synthesis of dTDP-
                69. Lopez-Gallego, F. and          activated 2,6-dideoxysugars as building
                   Schmidt-Dannert, C. (2010) Multi-  blocks of polyketide antibiotics. Carbo-
                   enzymatic synthesis. Curr. Opin. Chem.  hydr. Res., 335, 23–32.
                   Biol., 14, 174–183.          82. Elling, L., Rupprath, C., Gunther, N.,
                                                   Romer, U., Verseck, S., Weingarten,
                70. Enders, D., Grondal, C., and H¨ uttl,
                                                   P., Drager, G., Kirschning, A., and
                   M.R.M. (2007) Asymmetric organocat-
                                                   Piepersberg, W. (2005) An enzyme
                   alytic domino reactions. Angew. Chem.
                                                   module system for the synthesis of
                   Int. Ed., 46, 1570–1581.
                                                   dTDP-activated deoxysugars from
                71. Aebi, M. (2013) N-linked protein gly-  dTMP and sucrose. ChemBioChem, 6,
                   cosylation in the ER. Biochim. Biophys.
                                                   1423–1430.
                   Acta. doi: 10.1016/j.bbamcr.2013.04.001
                                                83. Bulter, T., Schumacher, T., Namdjou,
                72. Gill, D.J., Clausen, H., and Bard, F.  D.J., Gutierrez Gallego, R., Clausen,
                   (2011) Location, location, location:
                                                   H., and Elling, L. (2001) Chemoen-
                   new insights into O-GalNAc protein
                                                   zymatic synthesis of biotinylated
                   glycosylation. Trends Cell Biol., 21,  nucleotide sugars as substrates for
                   149–158.                        glycosyltransferases. ChemBioChem, 2,
                73. Dagan, R., Poolman, J., and Siegrist,  884–894.
                   C.A. (2010) Glycoconjugate vaccines  84. Namdjou, D.-J., Sauerzapfe, B.,
                   and immune interference: a review.  Schmiedel, J., Dr¨ ager, G., Bernatchez,
                   Vaccine, 28, 5513–5523.         S., Wakarchuk, W.W., and Elling, L.
                74. Jones, S. (2012) Improving glycocon-  (2007) Combination of UDP-Glc(NAc)
                                                    ′
                   jugate vaccines. Nat. Biotechnol., 30,  4 -epimerase and galactose oxidase
                   158.                            in a one-pot synthesis of biotinylated
   176   177   178   179   180   181   182   183   184   185   186