Page 199 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 199

References  175

                2. Juaristi, E. and Lopez-Ruiz, H. (1999)  12. Edreva, A. (2004) A novel strategy for
                  Recent advances in the enantioselective  plant protection: induced resistance. J.
                  synthesis of β-amino acids. Curr. Med.  Cell Mol. Biol., 3, 61–69.
                  Chem., 6 (10), 983–1004.     13. Begriche, K., Massart, J., and Fromenty,
                3. Weiner, B., Szyma´ nski, W., Janssen,  B. (2010) Effects of β-aminoisobutyric
                  D.B., Minnaard, A.J., and Feringa, B.L.  acid on leptin production and lipid
                  (2010) Recent advances in the catalytic  homeostasis: mechanisms and possible
                  asymmetric synthesis of β-amino acids.  relevance for the prevention of obe-
                  Chem.Soc.Rev., 39 (5), 1656–1691.  sity. Fundam. Clin. Pharmacol., 24 (3),
                4. Magriotis, P.A. (2001) Recent progress  269–282.
                                               14. Hintermann, T. and Seebach, D. (1997)
                  in the enantioselective synthesis of
                                                  Synthesis of a β-hexapeptide from
                  beta-lactams: development of the first
                                                  (R)-2-aminomethyl-alkanoic acids and
                  catalytic approaches. Angew. Chem. Int.
                                                  structural investigations. Synlett, (Suppl.
                  Ed., 40 (23), 4377–4379.
                                                  I), 437–438.
                5. Cronan, J.E., Little, K.J., and Jackowski,
                                               15. Seebach, D., Gademann, K., Schreiber,
                  S. (1982) Genetic and biochemical
                                                  J.V., Matthews, J.L., Hintermann, T.,
                  analyses of pantothenate biosynthe-
                                                  Jaun, B., Oberer, L., Hommel, U., and
                  sis in Escherichia coli and Salmonella
                                                  Widmer, H. (1997) Mixed β-peptides:
                  typhimurium. J. Bacteriol., 149 (3),  a unique helical secondary structure
                  916–922.                        in solution. Helv. Chim. Acta, 80 (7),
                6. Lundgren, S., Gojkovic, Z., Piskur, J.,  2033–2038.
                  and Dobritzsch, D. (2003) Yeast beta-  16. Liljeblad, A. and Kanerva, L.T. (2006)
                  alanine synthase shares a structural scaf-  Biocatalysis as a profound tool in the
                  fold and origin with dizinc-dependent  preparation of highly enantiopure
                  exopeptidases. J. Biol. Chem., 278 (51),  β-amino acids. Tetrahedron, 62 (25),
                  51851–51862.                    5831–5854.
                7. Artioli, G.G., Gualano, B., Smith, A.,  17. Liu, M. and Sibi, M.P. (2002) Recent
                  Stout, J., and Lancha, A.H. Jr., (2010)  advances in the stereoselective synthesis
                  Role of beta-alanine supplementation  of β-amino acids. Tetrahedron, 58 (40),
                  on muscle carnosine and exercise per-  7991–8035.
                  formance. Med. Sci. Sports Exerc., 42 (6),  18. Ma, J.-A. (2003) Recent developments
                  1162–1173.                      in the catalytic asymmetric synthesis of
                8. Derave, W., Everaert, I., Beeckman, S.,  α-and β-amino acids. Angew. Chem. Int.
                                                  Ed., 42 (36), 4290–4299.
                  and Baguet, A. (2010) Muscle carnosine
                                               19. Seebach, D., Beck, A.K., Capone, S.,
                  metabolism and beta-alanine supple-
                                                  Deniau, G., Groˇ selj, U., and Zass, E.
                  mentation in relation to exercise and
                                                  (2009) Enantioselective preparation of
                  training. Sports Med., 40 (3), 247–263.
                                                   2
                                                  β -amino acid derivatives for β-peptide
                9. Ito, T., Schaffer, S.W., and Azuma,  synthesis. Synthesis, 1, 1–32.
                  J. (2012) The potential usefulness of
                                               20. Turner, N.J. (2011) Ammonia lyases and
                  taurine on diabetes mellitus and its
                                                  aminomutases as biocatalysts for the
                  complications. Amino Acids, 42 (5),  synthesis of α-amino and β-amino acids.
                  1529–1539.
                                                  Curr. Opin. Chem. Biol., 15 (2), 234–240.
               10. Chen, C.C.H., Zhang, H., Kim,
                                               21. Wu, B., Szyma´ nski, W., Heberling,
                  A.D., Howard, A., Sheldrick, G.M.,  M.M., Feringa, B.L., and Janssen, D.B.
                  Mariano-Dunaway, D., and Herzberg, O.  (2011) Aminomutases: mechanistic
                  (2002) Degradation pathway of the phos-  diversity, biotechnological applica-
                  phonate ciliatine: crystal structure of  tions and future perspectives. Trends
                  2-aminoethylphosphonate transaminase.  Biotechnol., 29 (7), 352–362.
                                                                          2
                  Biochemistry, 41 (44), 13162–13169.  22. Lelais, G. and Seebach, D. (2004) β -
               11. Cohen, Y.R. (2004) β-aminobutyric  amino acids-syntheses, occurrence in
                  acid-induced resistance against plant  natural products, and components of
                  pathogens. Plant Dis., 86 (5), 448–457.  β-peptides. Biopolymers, 76 (3), 206–243.
   194   195   196   197   198   199   200   201   202   203   204