Page 219 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 219
References 195
transition state delocalization effects. J. screening assisted with fuzzy neural
Am. Chem. Soc., 123 (44), 11004–11009. network. J. Mol. Biol., 351, 683–692.
11. Amyes, T.L. and Richard, J.P. (1992) 21. Macovei, C., Vicennati, P., Quinton, J.,
Generation and stability of a sim- Nevers, M.-C., Volland, H., Creminon,
ple thiol ester enolate in aqueous C., and Taran, F. (2012) Polyclonal anti-
solution. J. Am. Chem. Soc., 114 (26), bodies: a cheap and efficient tool for
10297–10302. screening of enantioselective catalysts.
12. Meyer, H.-P., Eichhorn, E., Hanlon, S., Chem. Commun. (Cambridge, U.K.), 48,
L¨ utz, S., Sch¨ urmann, M., Wohlgemuth, 4411–4413.
R., and Coppolecchia, R. (2013) The use 22. Mateos-Diaz, E., Rodriguez, J.A.,
of enzymes in organic synthesis and Camacho-Ruiz, M.D.L.A., and
the life sciences: perspectives from the Mateos-Diaz, J.C. (2012) High-
Swiss Industrial Biocatalysis Consortium throughput screening method for
(SIBC). Catal. Sci. Technol., 3 (1), 29–40. lipases/esterases. Methods Mol. Biol.,
13. Bornscheuer, U.T. and Kazlauskas, R.J. 861, 89–100.
(2006) Hydrolases in Organic Synthesis, 23. Reymond, J.-L. (2004) Spectrophotomet-
Wiley-VCH Verlag GmbH & Co. KGaA, ric enzyme assays for high-throughput
Weinheim. screening. Food Technol. Biotechnol., 42,
14. Paravidino, M., B¨ ohm, P., Gr¨ oger, H., 265–269.
and Hanefeld, U. (2012) in Enzyme 24. Reymond, J.-L. (2008) Substrate arrays
Catalysis in Organic Synthesis (eds for fluorescence-based enzyme finger-
K. Drauz, H. Gr¨ oger, and O. May), printing and high-throughput screening.
Wiley-VCH Verlag GmbH & Co. KGaA, Ann. N.Y. Acad. Sci., 1130, 12–20.
Weinheim, pp. 249–362. 25. Schmidt, M. and Bornscheuer, U.T.
15. Nuijens, T., Quaedflieg, P.J.L.M., and (2005) High-throughput assays for
Jakubke, H.-D. (2012) in Enzyme Catal- lipases and esterases. Biomol. Eng., 22,
ysis in Organic Synthesis (eds K. Drauz, 51–56.
H. Gr¨ oger, and O. May), Wiley-VCH 26. Serveau-Avesque, C., Verger, R.,
Verlag GmbH & Co. KGaA, Weinheim, Rodriguez, J.A., and Abousalham,
pp. 675–748. A. (2013) Development of a high-
16. Faber, K. and Riva, S. (1992) Enzyme- throughput assay for measuring lipase
catalyzed irreversible acyl transfer. activity using natural triacylglycerols
Synthesis, 1992 (10), 895–910. coated on microtiter plates. Analyst
17. Bustos-Jaimes, I., Hummel, W., Eggert, (Cambridge, U.K.), 138, 5230–5238.
T., Bogo, E., Puls, M., Weckbecker, 27. Tam, J., Henault, M., Li, L., Wang, Z.,
A., and Jaeger, K.-E. (2009) A high- Partridge, A.W., and Melnyk, R.A.
throughput screening method for chiral (2011) An activity-based probe for
alcohols and its application to deter- high-throughput measurements of
mine enantioselectivity of lipases and triacylglycerol lipases. Anal. Biochem.,
esterases. ChemCatChem, 1, 445–448. 414, 254–260.
18. Gomes, N., Goncalves, C., 28. Wang, D., Wang, J., Wang, B., and
Garcia-Roman, M., Teixeira, J.A., and Yu, H. (2012) A new and efficient col-
Belo, I. (2011) Optimization of a col- orimetric high-throughput screening
orimetric assay for yeast lipase activity method for triacylglycerol lipase directed
in complex systems. Anal. Methods, 3, evolution. J. Mol. Catal. B: Enzym., 82,
1008–1013. 18–23.
19. Grognux, J. and Reymond, J.-L. (2006) 29. Yang, Y., Babiak, P., and Reymond, J.-L.
A red-fluorescent substrate microarray (2006) Low background FRET-substrates
for lipase fingerprinting. Mol. Biosyst., 2, for lipases and esterases suitable for
492–498. high-throughput screening under basic
20. Kato, R., Nakano, H., Konishi, H., Kato, (pH 11) conditions. Org. Biomol. Chem.,
K., Koga, Y., Yamane, T., Kobayashi, T., 4, 1746–1754.
and Honda, H. (2005) Novel strategy 30. Paravidino, M. and Hanefeld, U. (2011)
for protein exploration: high-throughput Enzymatic acylation: assessing the