Page 290 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 290

266  11 Nitrile Converting Enzymes Involved in Natural and Synthetic Cascade Reactions

                       Biodegradation potential of the genus  pathways, persistent metabolites and
                       Rhodococcus. Environ. Int., 35, 162–177.  involved degrader organisms. Environ.
                     12. Wang, D.X. and Wang, M.X. (2010)  Pollut., 154, 155–168.
                       Biotransformations of three-membered  20. Holtze, M.S., Sorensen, J., Hansen,
                       (hetero) cyclic nitriles and their applica-  H.C., and Aamand, J. (2006) Trans-
                       tions in organic synthesis. Prog. Chem.,  formation of the herbicide 2,6-
                       22, 1397–1402.                   dichlorobenzonitrile to the persistent
                     13. Leng, D.-H., Wang, D.-X., Pan, J.,  metabolite 2,6-dichlorobenzamide (BAM)
                       Huang, Z.-T., and Wang, M.-X. (2009)  by soil bacteria known to harbour nitrile
                       Highly efficient and enantioselec-  hydratase or nitrilase. Biodegradation, 17,
                       tive biotransformations of racemic  503–510.
                       azetidine-2-carbonitriles and their syn-  21. D’Antona, N., Nicolosi, G., Morrone, R.,
                       thetic applications. J. Org. Chem., 74,  Kub´ ac, D., Kaplan, O., and Mart ´ ınkov´ a,
                       6077–6082.                       L. (2010) Synthesis of novel cyano-
                     14. Leng, D.-H., Wang, D.-X., Huang, Z.-T.,  cyclitols and their stereoselective bio-
                       and Wang, M.-X. (2010) Highly efficient  transformation catalyzed by Rhodococcus
                       and enantioselective biotransformations  erythropolis A4. Tetrahedron: Asymmetry,
                       of β-lactam carbonitriles and carboxam-  21, 695–702.
                       ides and their synthetic applications.  22. D’Antona, N., Morrone, R., Bovicelli,
                       Org. Biomol. Chem., 8, 4736–4743.  P., Gambera, G., Kub´ aˇ c, D., and
                     15. Kinfe, H.H., Chhiba, V., Frederick, J.,  Mart ´ ınkov´ a, L. (2010) A novel chemo-
                       Bode, M.L., Mathiba, K., Steenkamp,  multienzymatic synthesis of bioactive
                       P.A., and Brady, D. (2009) Enan-  cyclophellitol and epi-cyclophellitol in
                       tioselective hydrolysis of β-hydroxy  both enantiopure forms. Tetrahedron:
                       nitriles using the whole cell biocatalyst  Asymmetry, 21, 2448–2454.
                       Rhodococcus rhodochrous ATCC BAA-870.  23. Kub´ aˇ c, D., ˇ Cejkov´ a, A., Mas´ ak, J., Jirku,
                       J. Mol. Catal. B: Enzym., 59, 231–236.  V., Lemaire, M., Gallienne, E., Bolte,
                     16. Mylerov´ a, V. and Mart ´ ınkov´ a, L.  J., Stloukal, R., and Mart ´ ınkov´ a, L.
                       (2003) Synthetic applications of nitrile-  (2006) Biotransformation of nitriles by
                       converting enzymes. Curr. Org. Chem.,  Rhodococcus equi A4 immobilized in
                       7, 1279–1295.                    LentiKats ® . J. Mol. Catal. B: Enzym., 39,
                     17. Vesel´ a, A.B., Pelantov´ a, H., ˇ Sulc, M.,  59–61.
                       Mackov´ a, M., Loveck´ a, P., Thimov´ a,  24. Kub´ aˇ c, D., Kaplan, O., Eliˇ s´ akov´ a, V.,
                       M., Pasquarelli, F., Piˇ cmanov´ a, M.,  P´ atek, M., Vejvoda, V., Sl´ amov´ a, K.,
                       P´ atek, M., Bhalla, T.C., and Mart ´ ınkov´ a,  T´ othov´ a, A., Lemaire, M., Gallienne,
                       L. (2012) Biotransformation of ben-  E., Lutz-Wahl, S., Fischer, L., Kuzma,
                       zonitrile herbicides via the nitrile  M., Pelantov´ a, H., van Pelt, S., Bolte,
                       hydratase–amidase pathway in     J., Kˇ ren, V., and Mart ´ ınkov´ a, L. (2008)
                       rhodococci. J. Ind. Microbiol. Biotechnol.,  Biotransformation of nitriles to amides
                       39, 1811–1819.                   using soluble and immobilized nitrile
                     18. Vesel´ a, A.B., Franc, M., Pelantov´ a, H.,  hydratase from Rhodococcus erythro-
                       Kub´ aˇ c, D., Vejvoda, V., ˇ Sulc, M., Bhalla,  polis A4. J. Mol. Catal. B: Enzym., 50,
                       T.C., Mackov´ a, M., Loveck´ a, P., Jan ̊ u,  107–113.
                       P., Demnerov´ a, K., and Mart ´ ınkov´ a,  25. Cohen, M.A., Sawden, J., and Turner,
                       L. (2010) Hydrolysis of benzonitrile  N.J. (1990) Selective hydrolysis of
                       herbicides by soil actinobacteria and  nitriles under mild conditions by
                       metabolite toxicity. Biodegradation, 21,  an enzyme. Tetrahedron Lett., 31,
                       761–770.                         7223–7226.
                     19. Holtze, M.S., Sørensen, S.R., Sørensen,  26. Beard, T., Cohen, M.A., Parratt, J.S.,
                       J., and Aamand, J. (2008) Microbial  Turner, N.J., Crosby, J., and Moilliet,
                       degradation of the benzonitrile her-  J. (1993) Stereoselective hydrolysis of
                       bicides dichlobenil, bromoxynil and  nitriles and amides under mild con-
                       ioxynil in soil and subsurface envi-  ditions using a whole cell catalyst.
                       ronments – insights into degradation  Tetrahedron: Asymmetry, 4, 1085–1104.
   285   286   287   288   289   290   291   292   293   294   295