Page 292 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 292

268  11 Nitrile Converting Enzymes Involved in Natural and Synthetic Cascade Reactions

                       Cytochrome P450 CYP79B2 from Ara-  from hydrolysis to acyl transfer activity.
                       bidopsis catalyzes the conversion of  J. Appl. Microbiol., 91, 381–393.
                       tryptophan to indole-3-acetaldoxime, a  54. Vejvoda, V., Mart ´ ınkov´ a, L., Vesel´ a, A.B.,
                       precursor of indole glucosinolates and  Kaplan, O., Lutz-Wahl, S., Fischer, L.,
                       indole-3-acetic acid. J. Biol. Chem., 275,  and Uhn´ akov´ a, B. (2011) Biotransfor-
                       33712–33717.                     mation of nitriles to hydroxamic acids
                     45. Kato, Y., Ooi, R., and Asano, Y. (2000)  via a nitrile hydratase–amidase cascade
                       Distribution of aldoxime dehydratase  reaction. J. Mol. Catal. B: Enzym., 71,
                       in microorganisms. Appl. Environ.  51–55.
                       Microbiol., 66, 2290–2296.    55. Fernandes, B.C.M., Mateo, C., Kiziak,
                     46. Sawai, H., Sugimoto, H., Kato, Y.,  C., Chmura, A., Wacker, J., van
                       Asano, Y., Shiro, Y., and Aono, S. (2009)  Rantwijk, F., Stolz, A., and Sheldon,
                       X-ray crystal structure of Michaelis com-  R.A. (2006) Nitrile hydratase activity of a
                       plex of aldoxime dehydratase. J. Biol.  recombinant nitrilase. Adv.Synth.Catal.,
                       Chem., 284, 32089–32096.         348, 2597–2603.
                     47. Kato, Y., Yoshida, S., Xie, S.-X., and
                                                     56. Vejvoda, V., Kaplan, O., Kub´ aˇ c, D.,
                       Asano, Y. (2004) Aldoxime dehy-
                                                        Kˇ ren, V., and Mart ´ ınkov´ a, L. (2006)
                       dratase co-existing with nitrile hydratase
                                                        Immobilization of fungal nitrilase and
                       and amidase in the iron-type nitrile  bacterial amidase – two enzymes work-
                       hydratase-producer Rhodococcus sp.  ing in accord. Biocatal. Biotransform., 24,
                       N-771. J. Biosci. Bioeng., 97, 250–259.  414–418.
                     48. Nomura, J., Hashimoto, H., Ohta, T.,  57. Griengl, H., Schwab, H., and Fechter,
                       Hashimoto, Y., Wada, K., Naruta, Y.,
                                                        M. (2000) The synthesis of chiral
                       Oinuma, K.-I., and Kobayashi, M. (2013)
                                                        cyanohydrins by oxynitrilases. Trends
                       Crystal structure of aldoxime dehy-
                                                        Biotechnol., 18, 252–256.
                       dratase and its catalytic mechanism  58. Effenberger, F., F¨ orster, S., and Wajant,
                       involved in carbon-nitrogen triple-bond  H. (2000) Hydroxynitrile lyases in
                       synthesis. Proc. Natl. Acad. Sci. U.S.A.,  stereoselective catalysis. Curr. Opin.
                       110, 2810–2815.
                     49. Wieser, M., Heinzmann, K., and  Biotechnol., 11, 532–539.
                                                     59. Bauer, M., Griengl, H., and Steiner, W.
                       Kiener, A. (1997) Bioconversion of
                                                        (1999) Parameters influencing stability
                       2-cyanopyrazine to 5-hydroxypyrazine-
                                                        and activity of a S-hydroxynitrile lyase
                       2-carboxylic acid with Agrobacterium sp.
                                                        from Hevea brasiliensis in two-phase
                       DSM 6336. Appl. Microbiol. Biotechnol.,
                                                        systems. Enzyme Microb. Technol., 24,
                       48, 174–176.
                                                        514–522.
                     50. de Oliveira, J.R., Mizuno, C.M.,
                                                     60. Kiziak, C., Conradt, D., Stolz, A., Mattes,
                       Seleghim, M.H.R., Javaroti, D.C.D.,
                                                        R., and Klein, J. (2005) Nitrilase from
                       Rezende, M.O.O., Landgraf, M.D., Sette,
                                                        Pseudomonas fluorescens EBC191: cloning
                       L.D., and Porto, A.L.M. (2013) Bio-
                       transformation of phenylacetonitrile to  and heterologous expression of the gene
                       2-hydroxyphenylacetic acid by marine  and biochemical characterization of the
                       fungi. Mar. Biotechnol., 15, 97–103.  recombinant enzyme. Microbiology, 151,
                     51. Rustler, S. and Stolz, A. (2007) Isola-  3639–3648.
                       tion and characterization of a nitrile  61. Baum, S., Williamson, D.S., Sewell,
                       hydrolysing acidotolerant black  T., and Stolz, A. (2012) Conversion of
                       yeast–Exophiala oligosperma R1. Appl.  sterically demanding α,α-disubstituted
                       Microbiol. Biotechnol., 75, 899–908.  phenylacetonitriles by the arylacetoni-
                     52. Yasukawa, K., Hasemi, R., and Asano,  trilase from Pseudomonas fluorescens
                       Y. (2011) Dynamic kinetic resolution  EBC191. Appl. Environ. Microbiol., 78,
                       of α-aminonitriles to form chiral α-  48–57.
                       amino acids. Adv. Synth. Catal., 353,  62. Mateo, C., Chmura, A., Rustler, S., van
                       2328–2332.                       Rantwijk, F., Stolz, A., and Sheldon,
                     53. Fournand, D. and Arnaud, A. (2001)  R.A. (2006) Synthesis of enantiomeri-
                       Aliphatic and enantioselective amidases:  cally pure (S)-mandelic acid using an
   287   288   289   290   291   292   293   294   295   296   297