Page 292 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 292
268 11 Nitrile Converting Enzymes Involved in Natural and Synthetic Cascade Reactions
Cytochrome P450 CYP79B2 from Ara- from hydrolysis to acyl transfer activity.
bidopsis catalyzes the conversion of J. Appl. Microbiol., 91, 381–393.
tryptophan to indole-3-acetaldoxime, a 54. Vejvoda, V., Mart ´ ınkov´ a, L., Vesel´ a, A.B.,
precursor of indole glucosinolates and Kaplan, O., Lutz-Wahl, S., Fischer, L.,
indole-3-acetic acid. J. Biol. Chem., 275, and Uhn´ akov´ a, B. (2011) Biotransfor-
33712–33717. mation of nitriles to hydroxamic acids
45. Kato, Y., Ooi, R., and Asano, Y. (2000) via a nitrile hydratase–amidase cascade
Distribution of aldoxime dehydratase reaction. J. Mol. Catal. B: Enzym., 71,
in microorganisms. Appl. Environ. 51–55.
Microbiol., 66, 2290–2296. 55. Fernandes, B.C.M., Mateo, C., Kiziak,
46. Sawai, H., Sugimoto, H., Kato, Y., C., Chmura, A., Wacker, J., van
Asano, Y., Shiro, Y., and Aono, S. (2009) Rantwijk, F., Stolz, A., and Sheldon,
X-ray crystal structure of Michaelis com- R.A. (2006) Nitrile hydratase activity of a
plex of aldoxime dehydratase. J. Biol. recombinant nitrilase. Adv.Synth.Catal.,
Chem., 284, 32089–32096. 348, 2597–2603.
47. Kato, Y., Yoshida, S., Xie, S.-X., and
56. Vejvoda, V., Kaplan, O., Kub´ aˇ c, D.,
Asano, Y. (2004) Aldoxime dehy-
Kˇ ren, V., and Mart ´ ınkov´ a, L. (2006)
dratase co-existing with nitrile hydratase
Immobilization of fungal nitrilase and
and amidase in the iron-type nitrile bacterial amidase – two enzymes work-
hydratase-producer Rhodococcus sp. ing in accord. Biocatal. Biotransform., 24,
N-771. J. Biosci. Bioeng., 97, 250–259. 414–418.
48. Nomura, J., Hashimoto, H., Ohta, T., 57. Griengl, H., Schwab, H., and Fechter,
Hashimoto, Y., Wada, K., Naruta, Y.,
M. (2000) The synthesis of chiral
Oinuma, K.-I., and Kobayashi, M. (2013)
cyanohydrins by oxynitrilases. Trends
Crystal structure of aldoxime dehy-
Biotechnol., 18, 252–256.
dratase and its catalytic mechanism 58. Effenberger, F., F¨ orster, S., and Wajant,
involved in carbon-nitrogen triple-bond H. (2000) Hydroxynitrile lyases in
synthesis. Proc. Natl. Acad. Sci. U.S.A., stereoselective catalysis. Curr. Opin.
110, 2810–2815.
49. Wieser, M., Heinzmann, K., and Biotechnol., 11, 532–539.
59. Bauer, M., Griengl, H., and Steiner, W.
Kiener, A. (1997) Bioconversion of
(1999) Parameters influencing stability
2-cyanopyrazine to 5-hydroxypyrazine-
and activity of a S-hydroxynitrile lyase
2-carboxylic acid with Agrobacterium sp.
from Hevea brasiliensis in two-phase
DSM 6336. Appl. Microbiol. Biotechnol.,
systems. Enzyme Microb. Technol., 24,
48, 174–176.
514–522.
50. de Oliveira, J.R., Mizuno, C.M.,
60. Kiziak, C., Conradt, D., Stolz, A., Mattes,
Seleghim, M.H.R., Javaroti, D.C.D.,
R., and Klein, J. (2005) Nitrilase from
Rezende, M.O.O., Landgraf, M.D., Sette,
Pseudomonas fluorescens EBC191: cloning
L.D., and Porto, A.L.M. (2013) Bio-
transformation of phenylacetonitrile to and heterologous expression of the gene
2-hydroxyphenylacetic acid by marine and biochemical characterization of the
fungi. Mar. Biotechnol., 15, 97–103. recombinant enzyme. Microbiology, 151,
51. Rustler, S. and Stolz, A. (2007) Isola- 3639–3648.
tion and characterization of a nitrile 61. Baum, S., Williamson, D.S., Sewell,
hydrolysing acidotolerant black T., and Stolz, A. (2012) Conversion of
yeast–Exophiala oligosperma R1. Appl. sterically demanding α,α-disubstituted
Microbiol. Biotechnol., 75, 899–908. phenylacetonitriles by the arylacetoni-
52. Yasukawa, K., Hasemi, R., and Asano, trilase from Pseudomonas fluorescens
Y. (2011) Dynamic kinetic resolution EBC191. Appl. Environ. Microbiol., 78,
of α-aminonitriles to form chiral α- 48–57.
amino acids. Adv. Synth. Catal., 353, 62. Mateo, C., Chmura, A., Rustler, S., van
2328–2332. Rantwijk, F., Stolz, A., and Sheldon,
53. Fournand, D. and Arnaud, A. (2001) R.A. (2006) Synthesis of enantiomeri-
Aliphatic and enantioselective amidases: cally pure (S)-mandelic acid using an