Page 448 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 448

424  18 Methyltransferases in Biocatalysis

                     85. Malla, S., Koffas, M.A.G., Kazlauskas,  Tang, K. (2004) Engineering tropane
                        R.J., and Kim, B.-G. (2012) Produc-  biosynthetic pathway in Hyoscyamus
                        tion of 7-O-methyl aromadendrin,  niger hairy root cultures. Proc. Natl.
                        a medicinally valuable flavonoid, in  Acad. Sci. U.S.A., 101, 6786–6791.
                        Escherichia coli. Appl. Environ. Micro-  94. (a)Hawkins,K.M.and Smolke,
                        biol., 78, 684–694.              C.D. (2008) Production of benzyliso-
                     86. Katsuyama, Y., Funa, N., and    quinoline alkaloids in Saccharomyces
                        Horinouchi, S. (2007) Precursor-  cerevisiae. Nat. Chem. Biol., 4, 564–573;
                        directed biosynthesis of stilbene methyl  (b) Minami, H., Kim, J., Ikezawa, N.,
                        ethers in Escherichia coli. Biotechnol. J.,  Takemura, T., Katayama, T., Kumagai,
                        2, 1286–1293.
                                                         H., and Sato, F. (2008) Microbial pro-
                     87. Rimando, A.M., Pan, Z., Polashock,
                        J.J., Dayan, F.E., Mizuno, C.S., Snook,  duction of plant benzylisoquinoline
                                                         alkaloids. Proc. Natl. Acad. Sci. U.S.A.,
                        M.E., Liu, C.-J., and Baerson, S.R.
                        (2012) In planta production of the  105, 7393–7398.
                        highly potent resveratrol analogue  95. Rodriguez, L., Rodriguez, D., Olano,
                        pterostilbene via stilbene synthase and  C., Brana, A.F., Mendez, C., and Salas,
                        O-methyltransferase co-expression.  J.A. (2001) Functional analysis of OleY
                        Plant Biotechnol. J., 10, 269–283.  L-oleandrosyl 3-O-methyltransferase of
                     88. Li, K. and Frost, J.W. (1998) Synthesis  the oleandomycin biosynthetic pathway
                        of vanillin from glucose. J. Am. Chem.  in Streptomyces antibioticus. J. Bacteriol.,
                        Soc., 120, 10545–10546.          183, 5358–5363.
                     89. Hansen, E.H., Møller, B.L., Kock,  96. Shi, R., Lamb, S.S., Zakeri, B., Proteau,
                        G.R., B¨ unner, K.M., Kristensen, C.,  A., Cui, Q., Sulea, T., Matte, A.,
                        Jensen, O.R., Okkels, F.T., Olsen, C.E.,
                                                         Wright, G.D., and Cygler, M. (2009)
                        Motawia, M.S., and Hansen, J. (2009)  Structure and function of the glycopep-
                        De novo biosynthesis of vanillin in fis-  tides N-methyltransferase MtfA, a tool
                        sion yeast (Schizosaccharomyces pombe)  for the biosynthesis of modified gly-
                        and baker’s yeast (Saccharomyces cere-
                        visiae). Appl. Environ. Microbiol., 75,  copeptide antibiotics. Chem. Biol., 16,
                                                         401–410.
                        2765–2774.
                     90. Brochado, A.R. and Patil, K.R. (2013)  97. Olano, C., Abdelfattah, M.S., Gullon,
                        Overexpression of O-methyltransferase  S., Brana, A.F., Rohr, J., Mendez, C.,
                        leads to improved vanillin production  and Salas, J.A. (2008) Glycosylated
                        in baker’s yeast only when comple-  derivatives of steffimycin: insights into
                        mented with model-guided network  the role of the sugar moieties for the
                        engineering. Biotechnol. Bioeng., 110,  biological activity. ChemBioChem, 9,
                        656–659.                         624–633.
                     91. Morishige, T., Choi, K.-B., and Sato,  98. Freitag, A., Li, S.-M., and Heide, L.
                        F. (2004) In vivo bioconversion of  (2006) Biosynthesis of the unusual
                        tetrahydroisoquinoline by recombinant  5,5-gem-dimethyl-deoxysugar noviose:
                        coclaurine N-methyltransferase. Biosci.
                                                         investigation of the C-methyltransferase
                        Biotechnol. Biochem., 68, 939–941.  gene cloU. Microbiology, 152,
                     92. Uefuji, H., Tatsumi, Y., Morimoto, M.,
                                                         2433–2442.
                        Kaothien-Nakayama, P., Ogita, S., and  99. Gregory, M.A., Hong, H., Lill, R.E.,
                        Sano, H. (2005) Caffeine production in
                        tobacco plants by simultaneous expres-  Gaisser, S., Petkovic, H., Low, L.,
                        sion of three coffee N-methyltrasferases  Sheehan, L.S., Carletti, I., Ready, S.J.,
                        and its potential as a pest repellant.  Ward, M.J., Kaja, A.L., Weston, A.J.,
                        Plant Mol. Biol., 59, 221–227.   Challis, I.R., Leadlay, P.F., Martin, C.J.,
                     93. Zhang, L.,Ding, R.,Chai, Y.,Bonfill,  Wilkinson, B., and Sheridan, R.M.
                        M., Moyano, E., Oksman-Caldentey,  (2006) Rapamycin biosynthesis: eluci-
                        K.-M., Xu, T., Pi, Y., Wang, Z., Zhang,  dation of gene product function. Org.
                        H., Kai, G., Liao, Z., Sun, X., and  Biomol. Chem., 4, 3565–3568.
   443   444   445   446   447   448   449   450   451   452   453