Page 448 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 448
424 18 Methyltransferases in Biocatalysis
85. Malla, S., Koffas, M.A.G., Kazlauskas, Tang, K. (2004) Engineering tropane
R.J., and Kim, B.-G. (2012) Produc- biosynthetic pathway in Hyoscyamus
tion of 7-O-methyl aromadendrin, niger hairy root cultures. Proc. Natl.
a medicinally valuable flavonoid, in Acad. Sci. U.S.A., 101, 6786–6791.
Escherichia coli. Appl. Environ. Micro- 94. (a)Hawkins,K.M.and Smolke,
biol., 78, 684–694. C.D. (2008) Production of benzyliso-
86. Katsuyama, Y., Funa, N., and quinoline alkaloids in Saccharomyces
Horinouchi, S. (2007) Precursor- cerevisiae. Nat. Chem. Biol., 4, 564–573;
directed biosynthesis of stilbene methyl (b) Minami, H., Kim, J., Ikezawa, N.,
ethers in Escherichia coli. Biotechnol. J., Takemura, T., Katayama, T., Kumagai,
2, 1286–1293.
H., and Sato, F. (2008) Microbial pro-
87. Rimando, A.M., Pan, Z., Polashock,
J.J., Dayan, F.E., Mizuno, C.S., Snook, duction of plant benzylisoquinoline
alkaloids. Proc. Natl. Acad. Sci. U.S.A.,
M.E., Liu, C.-J., and Baerson, S.R.
(2012) In planta production of the 105, 7393–7398.
highly potent resveratrol analogue 95. Rodriguez, L., Rodriguez, D., Olano,
pterostilbene via stilbene synthase and C., Brana, A.F., Mendez, C., and Salas,
O-methyltransferase co-expression. J.A. (2001) Functional analysis of OleY
Plant Biotechnol. J., 10, 269–283. L-oleandrosyl 3-O-methyltransferase of
88. Li, K. and Frost, J.W. (1998) Synthesis the oleandomycin biosynthetic pathway
of vanillin from glucose. J. Am. Chem. in Streptomyces antibioticus. J. Bacteriol.,
Soc., 120, 10545–10546. 183, 5358–5363.
89. Hansen, E.H., Møller, B.L., Kock, 96. Shi, R., Lamb, S.S., Zakeri, B., Proteau,
G.R., B¨ unner, K.M., Kristensen, C., A., Cui, Q., Sulea, T., Matte, A.,
Jensen, O.R., Okkels, F.T., Olsen, C.E.,
Wright, G.D., and Cygler, M. (2009)
Motawia, M.S., and Hansen, J. (2009) Structure and function of the glycopep-
De novo biosynthesis of vanillin in fis- tides N-methyltransferase MtfA, a tool
sion yeast (Schizosaccharomyces pombe) for the biosynthesis of modified gly-
and baker’s yeast (Saccharomyces cere-
visiae). Appl. Environ. Microbiol., 75, copeptide antibiotics. Chem. Biol., 16,
401–410.
2765–2774.
90. Brochado, A.R. and Patil, K.R. (2013) 97. Olano, C., Abdelfattah, M.S., Gullon,
Overexpression of O-methyltransferase S., Brana, A.F., Rohr, J., Mendez, C.,
leads to improved vanillin production and Salas, J.A. (2008) Glycosylated
in baker’s yeast only when comple- derivatives of steffimycin: insights into
mented with model-guided network the role of the sugar moieties for the
engineering. Biotechnol. Bioeng., 110, biological activity. ChemBioChem, 9,
656–659. 624–633.
91. Morishige, T., Choi, K.-B., and Sato, 98. Freitag, A., Li, S.-M., and Heide, L.
F. (2004) In vivo bioconversion of (2006) Biosynthesis of the unusual
tetrahydroisoquinoline by recombinant 5,5-gem-dimethyl-deoxysugar noviose:
coclaurine N-methyltransferase. Biosci.
investigation of the C-methyltransferase
Biotechnol. Biochem., 68, 939–941. gene cloU. Microbiology, 152,
92. Uefuji, H., Tatsumi, Y., Morimoto, M.,
2433–2442.
Kaothien-Nakayama, P., Ogita, S., and 99. Gregory, M.A., Hong, H., Lill, R.E.,
Sano, H. (2005) Caffeine production in
tobacco plants by simultaneous expres- Gaisser, S., Petkovic, H., Low, L.,
sion of three coffee N-methyltrasferases Sheehan, L.S., Carletti, I., Ready, S.J.,
and its potential as a pest repellant. Ward, M.J., Kaja, A.L., Weston, A.J.,
Plant Mol. Biol., 59, 221–227. Challis, I.R., Leadlay, P.F., Martin, C.J.,
93. Zhang, L.,Ding, R.,Chai, Y.,Bonfill, Wilkinson, B., and Sheridan, R.M.
M., Moyano, E., Oksman-Caldentey, (2006) Rapamycin biosynthesis: eluci-
K.-M., Xu, T., Pi, Y., Wang, Z., Zhang, dation of gene product function. Org.
H., Kai, G., Liao, Z., Sun, X., and Biomol. Chem., 4, 3565–3568.