Page 444 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 444
420 18 Methyltransferases in Biocatalysis
26. Bj¨ ork, G.R., Ericson, J.U., Gustafsson, Microbiol. Biotechnol., 74, 1205–1212;
C.E.D., Hagervall, T.G., J¨ onsson, Y.H., (c) Shobayashi, M., Mukai, N.,
and Wikstr¨ om, P.M. (1987) Trans- Iwashita, K., Hiraga, V., and Iefuji,
fer RNA modification. Annu. Rev. H. (2006) A new method for isolation
Biochem., 56, 263–287. of S-adenosyl-L-methionine (SAM)-
27. D’Alessio, A.C. and Szyf, M. (2006) accumulating yeast. Appl. Microbiol.
Epigenetic tˆ ete-` a-tˆ ete: the bilateral Biotechnol., 69, 704–710.
relationship between chromatin modifi- 34. (a) Lombardini, J.B., Coulter, A.W.,
cations and DNA methylation. Biochem. and Talalay, P. (1970) Analogues of
Cell Biol., 84, 463–476. methionine as substrates and inhibitors
28. Klimaˇ sauskas, S. and Weinhold, E. of the methionine adenosyltransferase
(2007) A new tool for biotechnology: reaction: deductions concerning the
AdoMet dependent methyltransferases. conformation of methionine. Mol.
Trends Biotechnol., 25, 99–104. Pharmacol., 6, 481–499; (b) Markham,
29. Silvermann, R.B. (2004) The Organic G.D., Hafner, E.W., Tabor, C.W., and
Chemistry of Drug Design and Drug Tabor, H. (1980) S-adenosylmethionine
Action, Academic Press, Burlington, synthetase from Escherichia coli. J. Biol.
VT, pp. 405–495. Chem., 255, 9082–9092.
30. (a) Ludwig, M.L. and Matthews, R.G. 35. Woodard, R.W., Tsai, M.-D., Floss,
(1997) Structure-based perspectives H.G., Crooks, P.A., and Coward, J.K.
on B -dependent enzymes. Annu. (1980) Stereochemical course of the
12
Rev. Biochem., 66, 269–313; (b) Evans, transmethylation catalyzed by catechol
J.C., Huddler, D.P., Hilgers, M.T., O-methyltransferase. J. Biol. Chem.,
Romanchuk, G., Matthews, R.G., and 255, 9124–9127.
Ludwig, M.L. (2004) Structures of 36. (a) L¨ uthy, J., Retey, J., and Arigoni,
the N-terminal modules imply large D. (1969) Preparation and detec-
domain motions during catalysis by tion of chiral methyl groups. Nature,
methionine synthase. Proc. Natl. Acad. 221, 1213–1215; (b) Cornforth, J.W.,
Sci. U.S.A., 101, 3729–3736. Redmond, J.W., Eggerer, H., Buckel,
31. Pejchal, R. and Ludwig, M.L. (2005) W., and Gutschow, C. (1970) Synthesis
Cobalamin-independent methionine and configurational assay of asymmet-
synthase (MetE): a face-to-face double ric methyl groups. Eur. J. Biochem., 14,
barrel that evolved by gene duplication. 1–13; (c) Cornforth, J.W., Reichard,
PLoS Biol., 3, 254–265. S.A., Talalay, P., Carrell, H.L., and
32. Cornell, K.A., Winter, R.W., Tower, Glusker, J.P. (1977) Determination of
P.A., and Riscoe, M.K. (1996) Affinity the absolute configuration at the sulfo-
purification of 5-methylthioadenosine nium center of S-adenosyl-methionine.
kinase and 5-methylthioribose/S- Correlation with the absolute con-
adenosylhomocysteine nucleosidase figuration of the diastereomeric
from Klebsiella pneumonia. Biochem. J., S-carboxymethyl-(S)-methionine salts. J.
317, 285–290. Am. Chem. Soc., 99, 7292–7300.
33. (a) He, J., Deng, J., Zheng, Y., and Gu, 37. Floss, H.G. and Lee, S. (1993) Chiral
J. (2006) A synergistic effect on the methyl groups: small is beautiful. Acc.
production of S-adenosyl-L-methionine Chem. Res., 26, 116–122.
in Pichia pastoris by knocking in of 38. (a) Zhou, P., O’Hagan, D., Mocek,
S-adenosyl-L-methionine synthase U., Zeng, Z., Yuen, L.-D., Frenzel, T.,
and knocking out of cystathionine-β Unkefer, C.J., Beale, J.M., and Floss,
synthase. J. Biotechnol., 126, 519–527; H.G. (1989) Biosynthesis of the antibi-
(b) Chen, H., Chu, J., Zhang, S., otic thiostrepton. Methylation of trypto-
Zhuang, Y., Qian, J., Wang, X., and phan in the formation of the quinaldic
Hu, Y. (2007) Intracellular expression acid moiety by transfer of the methio-
of vitreoscilla hemoglobin improves nine methyl group with net retention
S-adenosylmethionine production in of configuration. J. Am. Chem. Soc.,
a recombinant Pichia pastoris. Appl. 111, 7274–7276; (b) Frenzel, T., Zhou,