Page 444 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 444

420  18 Methyltransferases in Biocatalysis

                     26. Bj¨ ork, G.R., Ericson, J.U., Gustafsson,  Microbiol. Biotechnol., 74, 1205–1212;
                        C.E.D., Hagervall, T.G., J¨ onsson, Y.H.,  (c) Shobayashi, M., Mukai, N.,
                        and Wikstr¨ om, P.M. (1987) Trans-  Iwashita, K., Hiraga, V., and Iefuji,
                        fer RNA modification. Annu. Rev.  H. (2006) A new method for isolation
                        Biochem., 56, 263–287.           of S-adenosyl-L-methionine (SAM)-
                     27. D’Alessio, A.C. and Szyf, M. (2006)  accumulating yeast. Appl. Microbiol.
                        Epigenetic tˆ ete-` a-tˆ ete: the bilateral  Biotechnol., 69, 704–710.
                        relationship between chromatin modifi-  34. (a) Lombardini, J.B., Coulter, A.W.,
                        cations and DNA methylation. Biochem.  and Talalay, P. (1970) Analogues of
                        Cell Biol., 84, 463–476.         methionine as substrates and inhibitors
                     28. Klimaˇ sauskas, S. and Weinhold, E.  of the methionine adenosyltransferase
                        (2007) A new tool for biotechnology:  reaction: deductions concerning the
                        AdoMet dependent methyltransferases.  conformation of methionine. Mol.
                        Trends Biotechnol., 25, 99–104.  Pharmacol., 6, 481–499; (b) Markham,
                     29. Silvermann, R.B. (2004) The Organic  G.D., Hafner, E.W., Tabor, C.W., and
                        Chemistry of Drug Design and Drug  Tabor, H. (1980) S-adenosylmethionine
                        Action, Academic Press, Burlington,  synthetase from Escherichia coli. J. Biol.
                        VT, pp. 405–495.                 Chem., 255, 9082–9092.
                     30. (a) Ludwig, M.L. and Matthews, R.G.  35. Woodard, R.W., Tsai, M.-D., Floss,
                        (1997) Structure-based perspectives  H.G., Crooks, P.A., and Coward, J.K.
                        on B -dependent enzymes. Annu.   (1980) Stereochemical course of the
                           12
                        Rev. Biochem., 66, 269–313; (b) Evans,  transmethylation catalyzed by catechol
                        J.C., Huddler, D.P., Hilgers, M.T.,  O-methyltransferase. J. Biol. Chem.,
                        Romanchuk, G., Matthews, R.G., and  255, 9124–9127.
                        Ludwig, M.L. (2004) Structures of  36. (a) L¨ uthy, J., Retey, J., and Arigoni,
                        the N-terminal modules imply large  D. (1969) Preparation and detec-
                        domain motions during catalysis by  tion of chiral methyl groups. Nature,
                        methionine synthase. Proc. Natl. Acad.  221, 1213–1215; (b) Cornforth, J.W.,
                        Sci. U.S.A., 101, 3729–3736.     Redmond, J.W., Eggerer, H., Buckel,
                     31. Pejchal, R. and Ludwig, M.L. (2005)  W., and Gutschow, C. (1970) Synthesis
                        Cobalamin-independent methionine  and configurational assay of asymmet-
                        synthase (MetE): a face-to-face double  ric methyl groups. Eur. J. Biochem., 14,
                        barrel that evolved by gene duplication.  1–13; (c) Cornforth, J.W., Reichard,
                        PLoS Biol., 3, 254–265.          S.A., Talalay, P., Carrell, H.L., and
                     32. Cornell, K.A., Winter, R.W., Tower,  Glusker, J.P. (1977) Determination of
                        P.A., and Riscoe, M.K. (1996) Affinity  the absolute configuration at the sulfo-
                        purification of 5-methylthioadenosine  nium center of S-adenosyl-methionine.
                        kinase and 5-methylthioribose/S-  Correlation with the absolute con-
                        adenosylhomocysteine nucleosidase  figuration of the diastereomeric
                        from Klebsiella pneumonia. Biochem. J.,  S-carboxymethyl-(S)-methionine salts. J.
                        317, 285–290.                    Am. Chem. Soc., 99, 7292–7300.
                     33. (a) He, J., Deng, J., Zheng, Y., and Gu,  37. Floss, H.G. and Lee, S. (1993) Chiral
                        J. (2006) A synergistic effect on the  methyl groups: small is beautiful. Acc.
                        production of S-adenosyl-L-methionine  Chem. Res., 26, 116–122.
                        in Pichia pastoris by knocking in of  38. (a) Zhou, P., O’Hagan, D., Mocek,
                        S-adenosyl-L-methionine synthase  U., Zeng, Z., Yuen, L.-D., Frenzel, T.,
                        and knocking out of cystathionine-β  Unkefer, C.J., Beale, J.M., and Floss,
                        synthase. J. Biotechnol., 126, 519–527;  H.G. (1989) Biosynthesis of the antibi-
                        (b) Chen, H., Chu, J., Zhang, S.,  otic thiostrepton. Methylation of trypto-
                        Zhuang, Y., Qian, J., Wang, X., and  phan in the formation of the quinaldic
                        Hu, Y. (2007) Intracellular expression  acid moiety by transfer of the methio-
                        of vitreoscilla hemoglobin improves  nine methyl group with net retention
                        S-adenosylmethionine production in  of configuration. J. Am. Chem. Soc.,
                        a recombinant Pichia pastoris. Appl.  111, 7274–7276; (b) Frenzel, T., Zhou,
   439   440   441   442   443   444   445   446   447   448   449