Page 447 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 447
References 423
67. Lu, Z.J. and Markham, G.D. 76. Hu, X.Q., Chu, J., Zhang, S.L.,
(2002) Enzymatic properties of S- Zhuang, Y.P., Wang, Y.H., Zhu, Z.G.,
adenosylmethionine synthetase from and Yuan, Z.Y. (2007) A novel feeding
the archaeon Methanococcus jannaschii. strategy during the production phase
J. Biol. Chem., 277, 16624–16631. for enhancing the enzymatic synthe-
68. Park, J., Tai, J., Roessner, C.A., and sis of S-adenosyl-L-methionine by
Scott, A.I. (1996) Enzymatic synthesis methylotrophic Pichia pastoris. Enzyme
of S-adenosyl-L-methionine on the Microb. Technol., 40, 669–674.
preparative scale. Bioorg. Med. Chem., 77. Ohsuga, T. and Fushikida, K.
4, 2179–2185. (2009) Method of producing S-
69. Zhao, X.Q., Gust, B., and Heide, L. adenosylmethionine. International
(2010) S-adenosylmethionine (SAM) Patent WO2009/101945.
and antibiotic biosynthesis: effect 78. Hu, H., Qian, J., Chu, J., Wang, Y.,
of external addition of SAM and of Zhuang, Y., and Zhang, J. (2009) Opti-
overexpression of SAM biosynthesis mization of L-methionine feeding
strategy for improving S-adenosyl-L-
genes on novobiocin production in
methionine production by methionine
Streptomyces. Arch. Microbiol., 192,
adenosyltransferase overexpressed
289–297.
Pichia pastoris. Appl. Microbiol. Biotech-
70. Moln´ ar, I., Lopez, D., Wisecaver, J.H.,
Devarenne, T.P., Weiss, T.L., Pellegrini, nol., 83, 1105–1114.
M., and Hackett, J.D. (2012) Bio-crude 79. Yu, P. and Shen, X. (2012) Enhancing
transcriptomics: gene discovery and the production of S-adenosyl-L-
methionine in Pichia pastoris GS115 by
metabolic network reconstruction for
metabolic engineering. AMB Express, 2,
the biosynthesis of the terpenome
57–63.
of the hydrocarbon oil-producing
80. Roje, S., Chan, S.Y., Kaplan, F.,
green alga, Botryococcus braunii race B Raymond, R.K., Horne, D.W., Appling,
(Showa). BMC Genomics, 13, 576.
71. Nawabi, P., Bauer, S., Kyrpides, N., l.D.R., and Hanson, A.D. (2002)
Metabolic engineering in yeast demon-
and Lykidis, A. (2011) Engineering
strates that S-adenosylmethionine
Escherichia coli for biodiesel production
controls flux through the methylenete-
utilizing a bacterial fatty acid methyl-
trahydrofolate reductase reaction in
transferase. Appl. Environ. Microbiol.,
vivo. J. Biol. Chem., 277, 4056–4061.
77, 8052–8061.
81. Sung, S.H., Kim, B.-G., and Ahn, J.-H.
72. Rao, S.R. and Ravishankar, G.A. (2000)
(2011) Optimization of rhamnetin pro-
Biotransformation of protocatechuic
duction in Escherichia coli. J. Microbiol.
aldehyde and caffeic acid to vanillin
Biotechnol., 21, 854–857.
and capsaicin in freely suspended and
82. Kim, B.-G., Joe, E.J., and Ahn, J.-H.
immobilized cell cultures of Capsicum
(2010) Molecular characterization of
frutescens. J. Biotechnol., 76, 137–146. flavonol synthase from poplar and its
73. Bottiglieri, T. (2002) S-adenosyl-L- application to the synthesis of 3-O-
methionine (SAMe): from the bench methylkaempferol. Biotechnol. Lett., 32,
to the bedside – molecular basis of 579–584.
a pleiotrophic molecule. Am. J. Clin. 83. Leonard, E., Chemler, J., Lim, K.H.,
Nutr., 76, 1151S–1157S. and Koffas, M.A.G. (2006) Expression
74. Chu, J., Qian, J., Zhuang, Y., Zhang, of a soluble flavone synthase allows the
S., and Li, Y. (2013) Progress in the biosynthesis of phytoestrogen deriva-
research of S-adenosyl-L-methionine tives in Escherichia coli. Appl. Microbiol.
production. Appl. Microbiol. Biotechnol., Biotechnol., 70, 85–91.
97, 41–49. 84. Jeon, Y.M., Kim, B.G., and Ahn, J.-H.
75. Shiozaki, S., Shimizu, S., and Yamada, (2009) Biological synthesis of 7-O-
H. (1986) Production of S-adenosyl-L- methyl apigenin from naringenin using
methionine by Saccharomyces sake. J. Escherichia coli expressing two genes. J.
Biotechnol., 4, 345–354. Microbiol. Biotechnol., 19, 491–494.