Page 445 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 445

References  421

                   P., and Floss, H.G. (1990) Formation  Chem. Int. Ed., 48, 9546–9548; Angew.
                   of 2-methyltryptophan in the biosyn-  Chem., 121, 9710–9712.
                   thesis of thiostrepton: isolation of  47. Lee, B.W.K., Sun, H.G., Zang, T., Kim,
                   S-adenosyl-methionine: tryptophan  B.J., Alfaro, J.F., and Zhou, Z.S. (2010)
                   2-methyltransferase. Arch. Biochem.  Enzyme-catalyzed transfer of a ketone
                   Biophys., 278, 35–40.           group from an S-adenosylmethionine
                39. Kelly, W.L., Pan, L., and Li, C. (2009)  analogue: a tool for the functional
                   Thiostrepton biosynthesis: prototype  analysis of methyltransferases. J. Am.
                   for a new family of bacteriocins. J. Am.  Chem. Soc., 132, 3642–3643.
                   Chem. Soc., 131, 4327–4334.  48. Peters, W., Willnow, S., Duisken, M.,
                40. Pierre,S., Guillot, A.,Benjdia,A.,  Kleine, H., Macherey, T., Duncan,
                   Sandstroem, C., Langella, P., and  K.E., Litchfield, D.E., L¨ uscher, B.,
                   Berteau, O. (2012) Thiostrepton tryp-  and Weinhold, E. (2010) Enzymatic
                   tophan methyltransferase expands the  site-specific functionalization of pro-
                   chemistry of radical SAM enzymes.  tein methyltransferase substrates with
                   Nat. Chem. Biol., 8, 957–959.   alkynes for click labeling. Angew. Chem.
                41. Schlenk, F. and Dainko, J.L. (1975)  Int. Ed., 49, 5170–5173; Angew. Chem.,
                   The S-n-propyl analogue of S-   122, 5296–5299.
                   adenosylmethionine. Biochim. Biophys.  49. Lukinaviˇ cius, G., Tomkuvien˙ e, M.,
                   Acta, 385, 312–323.             Maseviˇ cius, V., and Klimaˇ sauskas, S.
                42. Parks, L.W. (1958) S-adenosylethionine  (2013) Enhanced chemical stability
                   and ethionine inhibition. J. Biol. Chem.,  of AdoMet analogues for improved
                   232, 169–176.                   methyltransferase-directed labeling of
                43. (a) Dalhoff, C., Lukinaviˇ cius, G.,  DNA. ACS Chem. Biol., 8, 1134–1139.
                   Klimaˇ sauskas, S., and Weinhold, E.  50. Gottfried, A. and Weinhold, E. (2011)
                   (2006) Direct transfer of extended  Sequence-specific covalent labeling
                   groups from synthetic cofactors  of DNA. Biochem. Soc. Trans., 39,
                   by DNA methyltransferases. Nat.  623–628.
                   Chem. Biol., 2,31–32; (b)Dalhoff,C.,  51. Kim, S., Gottfried, A., Lin, R.R.,
                   Lukinaviˇ cius, G., Klimaˇ sauskas, S.,  Dertinger, T., Kim, A.S., Chung, S.,
                   and Weinhold, E. (2006) Synthesis  Colyer, R.A., Weinhold, E., Weiss, S.,
                   of S-adenosyl-L-methionine analogs  and Ebenstein, Y. (2012) Enzymatically
                   and their use for sequence-specific  incorporated genomic tags for optical
                   transalkylation of DNA by methyltrans-  mapping of DNA-binding proteins.
                   ferases. Nature Protoc., 1, 1879–1886.  Angew. Chem. Int. Ed., 51, 3578–3581;
                44. De La Haba, G., Jamieson, G.A.,  Angew. Chem., 124, 3638–3641.
                   Mudd, S.H., and Richards, H.H. (1959)  52. Liutkeviˇ ci¯ ut˙ e, Z., Lukinaviˇ cius, G.,
                   S-adenosylmethionine: the relation of  Maseviˇ cius, V., Daujotyt˙ e, D., and
                   configuration at the sulfonium center  Klimaˇ sauskas, S. (2009) Cytosine-5-
                   to enzymatic reactivity. J. Am. Chem.  methyltransferases add aldehydes to
                   Soc., 81, 3975–3980.            DNA. Nat. Chem. Biol., 5, 400–402.
                45. Tengg, M., Stecher, H., Remler,  53. (a) Liutkeviˇ ci¯ ut˙ e, Z., Kriukien˙ e,
                   P., Eitelj¨ org, I., Schwab, H., and  E., Grigaityt˙ e, I., Maseviˇ cius,
                   Gruber-Khadjawi, M. (2012) Molec-  V., and Klimaˇ sauskas, S. (2011)
                   ular characterization of the C-  Methyltransferase-directed derivati-
                   methyltransferase NovO of Streptomyces  zation of 5-hydroxymethylcytosine
                   spheroides, a valuable enzyme for per-  in DNA. Angew. Chem. Int. Ed.,
                   forming Friedel-Crafts alkylation. J.  50, 2090–2093; Angew. Chem.,
                   Mol. Catal. B, 84,2–8.          123, 2138–2141; (b) M¨ unzel, M.,
                46. Stecher, H., Tengg, M., Ueberbacher,  Globisch, D., and Carell, T. (2011) 5-
                   B.J., Remler, P., Schwab, H., Griengl,  hydroxymethylcytosine, the sixth base
                   H., and Gruber-Khadjawi, M. (2009)  of the genome. Angew. Chem. Int. Ed.,
                   Biocatalytic Friedel-Crafts alkylation  50, 6460–6468; Angew. Chem., 123,
                   using non-natural cofactors. Angew.  6588–6596.
   440   441   442   443   444   445   446   447   448   449   450