Page 445 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 445
References 421
P., and Floss, H.G. (1990) Formation Chem. Int. Ed., 48, 9546–9548; Angew.
of 2-methyltryptophan in the biosyn- Chem., 121, 9710–9712.
thesis of thiostrepton: isolation of 47. Lee, B.W.K., Sun, H.G., Zang, T., Kim,
S-adenosyl-methionine: tryptophan B.J., Alfaro, J.F., and Zhou, Z.S. (2010)
2-methyltransferase. Arch. Biochem. Enzyme-catalyzed transfer of a ketone
Biophys., 278, 35–40. group from an S-adenosylmethionine
39. Kelly, W.L., Pan, L., and Li, C. (2009) analogue: a tool for the functional
Thiostrepton biosynthesis: prototype analysis of methyltransferases. J. Am.
for a new family of bacteriocins. J. Am. Chem. Soc., 132, 3642–3643.
Chem. Soc., 131, 4327–4334. 48. Peters, W., Willnow, S., Duisken, M.,
40. Pierre,S., Guillot, A.,Benjdia,A., Kleine, H., Macherey, T., Duncan,
Sandstroem, C., Langella, P., and K.E., Litchfield, D.E., L¨ uscher, B.,
Berteau, O. (2012) Thiostrepton tryp- and Weinhold, E. (2010) Enzymatic
tophan methyltransferase expands the site-specific functionalization of pro-
chemistry of radical SAM enzymes. tein methyltransferase substrates with
Nat. Chem. Biol., 8, 957–959. alkynes for click labeling. Angew. Chem.
41. Schlenk, F. and Dainko, J.L. (1975) Int. Ed., 49, 5170–5173; Angew. Chem.,
The S-n-propyl analogue of S- 122, 5296–5299.
adenosylmethionine. Biochim. Biophys. 49. Lukinaviˇ cius, G., Tomkuvien˙ e, M.,
Acta, 385, 312–323. Maseviˇ cius, V., and Klimaˇ sauskas, S.
42. Parks, L.W. (1958) S-adenosylethionine (2013) Enhanced chemical stability
and ethionine inhibition. J. Biol. Chem., of AdoMet analogues for improved
232, 169–176. methyltransferase-directed labeling of
43. (a) Dalhoff, C., Lukinaviˇ cius, G., DNA. ACS Chem. Biol., 8, 1134–1139.
Klimaˇ sauskas, S., and Weinhold, E. 50. Gottfried, A. and Weinhold, E. (2011)
(2006) Direct transfer of extended Sequence-specific covalent labeling
groups from synthetic cofactors of DNA. Biochem. Soc. Trans., 39,
by DNA methyltransferases. Nat. 623–628.
Chem. Biol., 2,31–32; (b)Dalhoff,C., 51. Kim, S., Gottfried, A., Lin, R.R.,
Lukinaviˇ cius, G., Klimaˇ sauskas, S., Dertinger, T., Kim, A.S., Chung, S.,
and Weinhold, E. (2006) Synthesis Colyer, R.A., Weinhold, E., Weiss, S.,
of S-adenosyl-L-methionine analogs and Ebenstein, Y. (2012) Enzymatically
and their use for sequence-specific incorporated genomic tags for optical
transalkylation of DNA by methyltrans- mapping of DNA-binding proteins.
ferases. Nature Protoc., 1, 1879–1886. Angew. Chem. Int. Ed., 51, 3578–3581;
44. De La Haba, G., Jamieson, G.A., Angew. Chem., 124, 3638–3641.
Mudd, S.H., and Richards, H.H. (1959) 52. Liutkeviˇ ci¯ ut˙ e, Z., Lukinaviˇ cius, G.,
S-adenosylmethionine: the relation of Maseviˇ cius, V., Daujotyt˙ e, D., and
configuration at the sulfonium center Klimaˇ sauskas, S. (2009) Cytosine-5-
to enzymatic reactivity. J. Am. Chem. methyltransferases add aldehydes to
Soc., 81, 3975–3980. DNA. Nat. Chem. Biol., 5, 400–402.
45. Tengg, M., Stecher, H., Remler, 53. (a) Liutkeviˇ ci¯ ut˙ e, Z., Kriukien˙ e,
P., Eitelj¨ org, I., Schwab, H., and E., Grigaityt˙ e, I., Maseviˇ cius,
Gruber-Khadjawi, M. (2012) Molec- V., and Klimaˇ sauskas, S. (2011)
ular characterization of the C- Methyltransferase-directed derivati-
methyltransferase NovO of Streptomyces zation of 5-hydroxymethylcytosine
spheroides, a valuable enzyme for per- in DNA. Angew. Chem. Int. Ed.,
forming Friedel-Crafts alkylation. J. 50, 2090–2093; Angew. Chem.,
Mol. Catal. B, 84,2–8. 123, 2138–2141; (b) M¨ unzel, M.,
46. Stecher, H., Tengg, M., Ueberbacher, Globisch, D., and Carell, T. (2011) 5-
B.J., Remler, P., Schwab, H., Griengl, hydroxymethylcytosine, the sixth base
H., and Gruber-Khadjawi, M. (2009) of the genome. Angew. Chem. Int. Ed.,
Biocatalytic Friedel-Crafts alkylation 50, 6460–6468; Angew. Chem., 123,
using non-natural cofactors. Angew. 6588–6596.