Page 442 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 442

418  18 Methyltransferases in Biocatalysis

                    Halle ‘‘Plant-based Bioeconomy’’, and BMBF Bioindustrie2021-Biokatalyse2021 –
                    P34.


                    References
                      1. Liscombe, D.K., Louie, G.V., and Noel,  S., Brandt, W., and Wessjohann, L.A.
                        J.P. (2012) Architectures, mechanisms  (2012) Identification of enterodiol
                        and molecular evolution of natural  as masker for caffeine bitterness by
                        product methyltransferases. Nat. Prod.  using a pharmacophore model based
                        Rep., 29, 1238–1250.             on structural analogous of homo-
                      2. (a) Wessjohann, L.A., Keim, J., Weigel,  eriodictyol. J. Agric. Food Chem., 60,
                        B., and Dippe, M. (2013) Alkylating  6303–6311.
                        enzymes. Curr. Opin. Chem. Biol.,
                                                      5. (a) Cantoni, G.L. (1953) S-
                        17, 229–235; (b) Wessjohann, L.A.,
                                                         adenosylmethionine, a new inter-
                        Vogt, T., Kufka, J., and Klein, R.  mediate formed enzymatically from
                        (2012) Alkylierende enzyme. Prenyl-
                                                         L-methionine and adenosinetriphos-
                        und methyltransferasen in natur und  phate. J. Biol. Chem., 204, 403–416; (b)
                        synthese. Biospektrum, 18, 22–25.
                      3. (a) Horvath, G., Wessjohann, L.A.,  Cantoni, G.L. (1975) Biological methy-
                        Guissez, Y., Biebaut, E., Caubergs, R.J.,  lation: selected aspects. Annu. Rev.
                        and Horemans, N. (2004) Seeds of  Biochem., 44, 435–451.
                                                      6. International Union of Biochemistry
                        grapes of Vitis vinifera var. Alphonse
                        lavall´ ee (royal) – a possible model  and Molecular Biology (1992) Enzyme
                        tissue for studying tocotrienol biosyn-  Nomenclature, Academic Press, New
                        thesis. Acta Hortic., 652, 415–424 (b)  York.
                        Metei, Y.C., Ngila, J.C., Yeboah, S.O.,  7. Thomas, D.J., Waters, S.B., and Styblo,
                        Wessjohann, L.A., and Schmidt, J.  M. (2004) Elucidating the pathway
                        (2009) Profiling of phytosterols, toco-  for arsenic methylation. Toxicol. Appl.
                        pherols and tocotrienols in selected  Pharmacol., 198, 319–326.
                        seed oils from Botswana by GC–MS  8. Wessjohann, L.A., Brandt, W., and
                        and HPLC. J. Am. Oil Chem. Soc., 86,  Tiemann, T. (2003) Biosynthesis and
                        617–625; (c) Seppanen, C.M., Qinghua,  metabolism of cyclopropane rings in
                        S., and Csallany, A.S. (2010) The  natural compounds. Chem. Rev., 103,
                        antioxidant functions of tocopherol and  1625–1647.
                        tocotrienol homologues in oils, fats,  9. Grogan, D.W. and Cronan, J.E. Jr.,
                        and food systems. J. Am. Oil Chem.  (1997) Cyclopropane ring formation in
                        Soc., 87, 469–481.
                                                         membrane lipids of bacteria. Microbiol.
                      4. (a) Milligan, S., Kalita, J., Pocock,  Mol. Biol. Rev., 61, 429–441.
                        V., Heyerick, A., De Cooman, L.,  10. Attieh, J.M., Hanson, A.D., and
                        Rong, H., and De Keukeleire, D.
                                                         Saini, H.S. (1995) Purification and
                        (2002) Oestrogenic activity of the hop  characterization of a novel methyltrans-
                        phyto-oestrogen, 8-prenylnaringenin.
                        Reproduction, 123, 235–242; (b)  ferase responsible for biosynthesis of
                                                         halomethanes and methanethiol in
                        Gerh¨ auser, C. and Frank, N. (2005)
                                                         Brassica oleracea. J. Biol. Chem., 270,
                        Xanthohumol – a new all-rounder?
                        Mol. Nutr. Food Res., 49, 821–893; (c)  9250–9257.
                        Wessjohann, L.A. and Ley, J.P., Taste  11. Cheng, X. and Blumenthal, R.M. (eds)
                        profiles of selected flavonoids, unpub-  (1999) S-Adenosylmethionine-Dependent
                        lished. For published work on closely  Methyltransferases: Structures and Func-
                        related phenylpropanoids and fla-  tions, World Scientific, Singapore, New
                        vanoids cf.Ley, J.P., Dessoy, M., Paetz,  Jersey, London, Hong Kong.
                        S., Blings, M., Hoffmann-L¨ ucke, P.,  12. Schubert, H.L., Blumenthal, R.M.,
                        Reichelt, K., Krammer, G.E., Ipenkny,  and Cheng, X.D. (2003) Many paths
   437   438   439   440   441   442   443   444   445   446   447