Page 442 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 442
418 18 Methyltransferases in Biocatalysis
Halle ‘‘Plant-based Bioeconomy’’, and BMBF Bioindustrie2021-Biokatalyse2021 –
P34.
References
1. Liscombe, D.K., Louie, G.V., and Noel, S., Brandt, W., and Wessjohann, L.A.
J.P. (2012) Architectures, mechanisms (2012) Identification of enterodiol
and molecular evolution of natural as masker for caffeine bitterness by
product methyltransferases. Nat. Prod. using a pharmacophore model based
Rep., 29, 1238–1250. on structural analogous of homo-
2. (a) Wessjohann, L.A., Keim, J., Weigel, eriodictyol. J. Agric. Food Chem., 60,
B., and Dippe, M. (2013) Alkylating 6303–6311.
enzymes. Curr. Opin. Chem. Biol.,
5. (a) Cantoni, G.L. (1953) S-
17, 229–235; (b) Wessjohann, L.A.,
adenosylmethionine, a new inter-
Vogt, T., Kufka, J., and Klein, R. mediate formed enzymatically from
(2012) Alkylierende enzyme. Prenyl-
L-methionine and adenosinetriphos-
und methyltransferasen in natur und phate. J. Biol. Chem., 204, 403–416; (b)
synthese. Biospektrum, 18, 22–25.
3. (a) Horvath, G., Wessjohann, L.A., Cantoni, G.L. (1975) Biological methy-
Guissez, Y., Biebaut, E., Caubergs, R.J., lation: selected aspects. Annu. Rev.
and Horemans, N. (2004) Seeds of Biochem., 44, 435–451.
6. International Union of Biochemistry
grapes of Vitis vinifera var. Alphonse
lavall´ ee (royal) – a possible model and Molecular Biology (1992) Enzyme
tissue for studying tocotrienol biosyn- Nomenclature, Academic Press, New
thesis. Acta Hortic., 652, 415–424 (b) York.
Metei, Y.C., Ngila, J.C., Yeboah, S.O., 7. Thomas, D.J., Waters, S.B., and Styblo,
Wessjohann, L.A., and Schmidt, J. M. (2004) Elucidating the pathway
(2009) Profiling of phytosterols, toco- for arsenic methylation. Toxicol. Appl.
pherols and tocotrienols in selected Pharmacol., 198, 319–326.
seed oils from Botswana by GC–MS 8. Wessjohann, L.A., Brandt, W., and
and HPLC. J. Am. Oil Chem. Soc., 86, Tiemann, T. (2003) Biosynthesis and
617–625; (c) Seppanen, C.M., Qinghua, metabolism of cyclopropane rings in
S., and Csallany, A.S. (2010) The natural compounds. Chem. Rev., 103,
antioxidant functions of tocopherol and 1625–1647.
tocotrienol homologues in oils, fats, 9. Grogan, D.W. and Cronan, J.E. Jr.,
and food systems. J. Am. Oil Chem. (1997) Cyclopropane ring formation in
Soc., 87, 469–481.
membrane lipids of bacteria. Microbiol.
4. (a) Milligan, S., Kalita, J., Pocock, Mol. Biol. Rev., 61, 429–441.
V., Heyerick, A., De Cooman, L., 10. Attieh, J.M., Hanson, A.D., and
Rong, H., and De Keukeleire, D.
Saini, H.S. (1995) Purification and
(2002) Oestrogenic activity of the hop characterization of a novel methyltrans-
phyto-oestrogen, 8-prenylnaringenin.
Reproduction, 123, 235–242; (b) ferase responsible for biosynthesis of
halomethanes and methanethiol in
Gerh¨ auser, C. and Frank, N. (2005)
Brassica oleracea. J. Biol. Chem., 270,
Xanthohumol – a new all-rounder?
Mol. Nutr. Food Res., 49, 821–893; (c) 9250–9257.
Wessjohann, L.A. and Ley, J.P., Taste 11. Cheng, X. and Blumenthal, R.M. (eds)
profiles of selected flavonoids, unpub- (1999) S-Adenosylmethionine-Dependent
lished. For published work on closely Methyltransferases: Structures and Func-
related phenylpropanoids and fla- tions, World Scientific, Singapore, New
vanoids cf.Ley, J.P., Dessoy, M., Paetz, Jersey, London, Hong Kong.
S., Blings, M., Hoffmann-L¨ ucke, P., 12. Schubert, H.L., Blumenthal, R.M.,
Reichelt, K., Krammer, G.E., Ipenkny, and Cheng, X.D. (2003) Many paths