Page 443 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 443

References  419

                   to methyltransfer: a chronicle of con-  with DNA and a cofactor analog. Nat.
                   vergence. Trends Biochem. Sci., 28,  Struct. Biol., 8, 121–125.
                   329–335.                     20. (a) Jeltsch, A. (2001) The cytosine
                13. (a) Sofia, H.J., Chen, G., Hetzler, B.G.,  N4-methyltransferase M.PvuII also
                   Reyes-Spindola, J.F., and Miller, N.E.  modifies adenine residues. Biol. Chem.,
                   (2001) Radical SAM, a novel protein  382, 707–710; (b) Gong, W., O’Gara,
                   superfamily linking unresolved steps  M., Blumenthal, R.M., and Cheng,
                   in familiar biosynthetic pathways with  X. (1997) Structure of PvuII DNA-
                   radical mechanisms: functional char-  (cytosine N4) methyltransferase, an
                   acterization using new analysis and  example of domain permutation and
                   information visualization methods.  protein fold assignment. Nucleic Acids
                   Nucleic Acids Res., 29, 1097–1106; (b)  Res., 25, 2702–2715.
                   Layer, G., Moser, J., Heinz, D.W., Jahn,  21. (a) Huang, Y., Komoto, J., Konishi,
                   D., and Schubert, W.-D. (2003) Crys-  K., Takata, Y., Ogawa, H., Gomi, T.,
                   tal structure of coproporphyrinogen  Fujioka, M., and Takusagawa, F. (2000)
                                                   Mechanisms for auto-inhibition and
                   III oxidase reveals cofactor geome-
                                                   forced product release in glycine N-
                   try of radical SAM enzymes. EMBO
                                                   methyltransferase: crystal structures
                   J., 22, 6214–6224; (c) Berkovitch, F.,
                                                   of wild-type, mutant r175k and S-
                   Nicolet, Y., Wan, J.T., Jarrett, J.T.,
                   and Drennan, C.L. (2004) Crystal  adenosyl-homocysteine- bound r175k
                   structure of biotin synthase, an S-  enzymes. J. Mol. Biol., 298, 149–162;
                   adenosylmethionine-dependent radical  (b) Zhang, X., Zhou, L., and Cheng,
                                                   X. (2000) Crystal structure of the
                   enzyme. Science, 303, 76–79.
                                                   conserved core of protein arginine
                14. Walsby, C.J., Ortillo, D., Yang, J.,
                                                   methyltransferase prmt3. EMBO J., 19,
                   Nnyepi, M.R., Broderick, W.E.,
                                                   3509–3519.
                   Hoffman, B.M., and Broderick, J.B.  22. Klimasauskas, S., Kumar, S., Roberts,
                   (2005) Spectroscopic approaches to elu-  R.J., and Cheng, X. (1994) HhaI
                   cidating novel iron-sulfur chemistry in  methyltransferase flips its target
                   the ‘‘radical-SAM’’ protein superfamily.
                                                   base out of the DNA helix. Cell, 76,
                   Inorg. Chem., 44, 727–741.
                                                   357–369.
                15. Struck, A.-W., Thompson, M.L., Wong,
                                                23. (a) Nes, W.D. (2003) Enzyme mech-
                   L.S., and Micklefield, J. (2012) S-
                                                   anisms for sterol C-methylations.
                   adenosyl-methionine-dependent
                                                   Phytochemistry, 64, 75–95; (b) Nes,
                   methyltransferases: highly versatile
                                                   W.D. (2011) Biosynthesis of cholesterol
                   enzymes in biocatalysis, biosynthesis
                                                   and other sterols. Chem. Rev., 111,
                   and other biotechnological applications.
                                                   6423–6451.
                   ChemBioChem, 13, 2642–2655.
                                                24. Barreiro, E.J., K¨ ummerle, A.E., and
                16. Dalhoff, C. and Weinhold, E. (2008) in
                                                   Fraga, C.A.M. (2011) The methylation
                   Biochemistry, Biotechnology and Medicine  effect in medicinal chemistry. Chem.
                   (ed. P. Herdewijn), Wiley-VCH Verlag  Rev., 111, 5215–5246.
                   GmbH, Weinheim, pp. 557–581.  25. (a) Kostic, V.S. (2004) COMT inhibi-
                17. Klimaˇ sauskas, S. and Lukinaviˇ cius, G.  tion in the treatment of Parkinson’s
                   (2009) in Wiley Encyclopedia of Chemical  disease: neuroprotection and future
                   Biology (ed. T.P. Begley), John Wiley &  perspectives. Adv. Exp. Med. Biol., 541,
                   Sons, Inc., Hoboken, NJ, pp. 8–17.  75–90; (b) Paulini, R., Trindler, C.,
                18. Vidgren, J., Svensson, L.A., and Liljas,  Lerner, C., Braendli, L., Schweizer,
                   A. (1994) Crystal structure of cate-  W.B., Jakob-Roetne, R., Zuercher, G.,
                   chol O-methyltransferase. Nature, 368,  Borroni, E., and Diederich, F. (2006)
                   354–358.                        Bisubstrate inhibitors of catechol O-
                19. Goedecke, K., Pignot, M., Goody, R.S.,  methyltransferase (COMT): the crucial
                   Scheidig, A.J., and Weinhold, E. (2001)  role of the ribose structural unit for
                   Structure of the N6-adenine DNA  inhibitor binding affinity. ChemMed-
                   methyltransferase M.TaqI in complex  Chem, 1, 340–357.
   438   439   440   441   442   443   444   445   446   447   448