Page 443 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 443
References 419
to methyltransfer: a chronicle of con- with DNA and a cofactor analog. Nat.
vergence. Trends Biochem. Sci., 28, Struct. Biol., 8, 121–125.
329–335. 20. (a) Jeltsch, A. (2001) The cytosine
13. (a) Sofia, H.J., Chen, G., Hetzler, B.G., N4-methyltransferase M.PvuII also
Reyes-Spindola, J.F., and Miller, N.E. modifies adenine residues. Biol. Chem.,
(2001) Radical SAM, a novel protein 382, 707–710; (b) Gong, W., O’Gara,
superfamily linking unresolved steps M., Blumenthal, R.M., and Cheng,
in familiar biosynthetic pathways with X. (1997) Structure of PvuII DNA-
radical mechanisms: functional char- (cytosine N4) methyltransferase, an
acterization using new analysis and example of domain permutation and
information visualization methods. protein fold assignment. Nucleic Acids
Nucleic Acids Res., 29, 1097–1106; (b) Res., 25, 2702–2715.
Layer, G., Moser, J., Heinz, D.W., Jahn, 21. (a) Huang, Y., Komoto, J., Konishi,
D., and Schubert, W.-D. (2003) Crys- K., Takata, Y., Ogawa, H., Gomi, T.,
tal structure of coproporphyrinogen Fujioka, M., and Takusagawa, F. (2000)
Mechanisms for auto-inhibition and
III oxidase reveals cofactor geome-
forced product release in glycine N-
try of radical SAM enzymes. EMBO
methyltransferase: crystal structures
J., 22, 6214–6224; (c) Berkovitch, F.,
of wild-type, mutant r175k and S-
Nicolet, Y., Wan, J.T., Jarrett, J.T.,
and Drennan, C.L. (2004) Crystal adenosyl-homocysteine- bound r175k
structure of biotin synthase, an S- enzymes. J. Mol. Biol., 298, 149–162;
adenosylmethionine-dependent radical (b) Zhang, X., Zhou, L., and Cheng,
X. (2000) Crystal structure of the
enzyme. Science, 303, 76–79.
conserved core of protein arginine
14. Walsby, C.J., Ortillo, D., Yang, J.,
methyltransferase prmt3. EMBO J., 19,
Nnyepi, M.R., Broderick, W.E.,
3509–3519.
Hoffman, B.M., and Broderick, J.B. 22. Klimasauskas, S., Kumar, S., Roberts,
(2005) Spectroscopic approaches to elu- R.J., and Cheng, X. (1994) HhaI
cidating novel iron-sulfur chemistry in methyltransferase flips its target
the ‘‘radical-SAM’’ protein superfamily.
base out of the DNA helix. Cell, 76,
Inorg. Chem., 44, 727–741.
357–369.
15. Struck, A.-W., Thompson, M.L., Wong,
23. (a) Nes, W.D. (2003) Enzyme mech-
L.S., and Micklefield, J. (2012) S-
anisms for sterol C-methylations.
adenosyl-methionine-dependent
Phytochemistry, 64, 75–95; (b) Nes,
methyltransferases: highly versatile
W.D. (2011) Biosynthesis of cholesterol
enzymes in biocatalysis, biosynthesis
and other sterols. Chem. Rev., 111,
and other biotechnological applications.
6423–6451.
ChemBioChem, 13, 2642–2655.
24. Barreiro, E.J., K¨ ummerle, A.E., and
16. Dalhoff, C. and Weinhold, E. (2008) in
Fraga, C.A.M. (2011) The methylation
Biochemistry, Biotechnology and Medicine effect in medicinal chemistry. Chem.
(ed. P. Herdewijn), Wiley-VCH Verlag Rev., 111, 5215–5246.
GmbH, Weinheim, pp. 557–581. 25. (a) Kostic, V.S. (2004) COMT inhibi-
17. Klimaˇ sauskas, S. and Lukinaviˇ cius, G. tion in the treatment of Parkinson’s
(2009) in Wiley Encyclopedia of Chemical disease: neuroprotection and future
Biology (ed. T.P. Begley), John Wiley & perspectives. Adv. Exp. Med. Biol., 541,
Sons, Inc., Hoboken, NJ, pp. 8–17. 75–90; (b) Paulini, R., Trindler, C.,
18. Vidgren, J., Svensson, L.A., and Liljas, Lerner, C., Braendli, L., Schweizer,
A. (1994) Crystal structure of cate- W.B., Jakob-Roetne, R., Zuercher, G.,
chol O-methyltransferase. Nature, 368, Borroni, E., and Diederich, F. (2006)
354–358. Bisubstrate inhibitors of catechol O-
19. Goedecke, K., Pignot, M., Goody, R.S., methyltransferase (COMT): the crucial
Scheidig, A.J., and Weinhold, E. (2001) role of the ribose structural unit for
Structure of the N6-adenine DNA inhibitor binding affinity. ChemMed-
methyltransferase M.TaqI in complex Chem, 1, 340–357.