Page 86 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 86
62 3 Monooxygenase-Catalyzed Redox Cascade Biotransformations
Gieren, H., and Kula, M.R. (1999) Pilot biotransformations. New Biotechnol., 25,
scale production and isolation of recom- S112.
binant NAD(+)- and NADP(+)-specific 25. Di Gennaro, P., Bernasconi, S., Orsini,
formate dehydrogenases. Biotechnol. F., Corretto, E., and Sello, G. (2010)
Bioeng., 64, 187–193. Multienzymatic preparation of 3-
17. Pazmino, D.E.T., Snajdrova, R., Baas, [(1R)-1-hydroxyethylibenzoic acid and
B.J., Ghobrial, M., Mihovilovic, M.D., (2S)-hydroxy(phenyl)ethanoic acid.
and Fraaije, M.W. (2008) Self-sufficient Tetrahedron: Asymmetry, 21, 1885–1889.
Baeyer–Villiger monooxygenases: 26. Xu, Y., Jia, X., Panke, S., and Li, Z.
effective coenzyme regeneration for (2009) Asymmetric dihydroxylation of
biooxygenation by fusion engineering. aryl olefins by sequential enantiose-
Angew. Chem. Int. Ed., 47, 2275–2278. lective epoxidation and regioselective
18. Pazmino, D.E.T., Riebel, A., de Lange, hydrolysis with tandem biocatalysts.
J., Rudroff, F., Mihovilovic, M.D., and Chem. Commun., 1481–1483.
Fraaije, M.W. (2009) Efficient biooxida- 27. Zhang, W., Tang, W.L., Wang, D.I.C.,
tions catalyzed by a new generation of and Li, Z. (2011) Concurrent oxidations
self-sufficient Baeyer–Villiger monooxy- with tandem biocatalysts in one pot:
genases. ChemBioChem, 10, 2595–2598. green, selective and clean oxidations of
19. Zhai, X.H., Ma, Y.H., Lai, D.Y., Zhou, methylene groups to ketones. Chem.
S., and Chen, Z.M. (2013) Development Commun., 47, 3284–3286.
of a whole-cell biocatalyst with NADPH 28. Song, J.W., Jeon, E.Y., Song, D.H., Jang,
regeneration system for biosulfoxida- H.Y., Bornscheuer, U.T., Oh, D.K., and
tion. J. Ind. Microbiol. Biotechnol., 40, Park, J.B. (2013) Multistep enzymatic
797–803. synthesis of long-chain α,ω-dicarboxylic
20. Toda, H., Imae, R., and Itoh, N. (2012) and ω-hydroxycarboxylic acids from
Efficient biocatalysis for the production renewable fatty acids and plant oils.
of enantiopure (S)-epoxides using a Angew. Chem. Int. Ed., 52, 2534–2537.
styrene monooxygenase (SMO) and Leif- 29. Kirschner, A., Altenbuchner, J., and
sonia alcohol dehydrogenase (LSADH) Bornscheuer, U.T. (2007) Design of a
system. Tetrahedron: Asymmetry, 23, secondary alcohol degradation pathway
1542–1549. from Pseudomonas fluorescens DSM
21. Tischler, D., Kermer, R., Groning, 50106 in an engineered Escherichia
J.A.D., Kaschabek, S.R., van Berkel, coli. Appl. Microbiol. Biotechnol., 75,
W.J.H., and Schlomann, M. (2010) 1095–1101.
StyA1 and StyA2B from Rhodococcus 30. Buehler, B., Schmid, A., Hauer, B., and
opacus 1CP: a multifunctional styrene Witholt, B. (2000) Xylene monooxyge-
monooxygenase system. J. Bacteriol., nase catalyzes the multistep oxygenation
192, 5220–5227. of toluene and pseudocumene to corre-
22. Staudt, S., Bornscheuer, U.T., Menyes, sponding alcohols, aldehydes, and acids
U., Hummel, W., and Gr¨ oger, H. in Escherichia coli JM101. J. Biol. Chem.,
(2013) Direct biocatalytic one-pot- 275, 10085–10092.
transformation of cyclohexanol with 31. Buehler, B., Bollhalder, I., Hauer, B.,
molecular oxygen into ε-caprolactone. Witholt, B., and Schmid, A. (2003)
Enzyme Microb. Technol., 53, 288–292. Use of the two-liquid phase concept
23. Mallin, H., Wulf, H., and Bornscheuer, to exploit kinetically controlled multi-
U.T. (2013) A self-sufficient step biocatalysis. Biotechnol. Bioeng., 81,
Baeyer–Villiger biocatalysis system 683–694.
for the synthesis of ε-caprolactone from 32. Buehler, B., Bollhalder, I., Hauer, B.,
cyclohexanol. Enzyme Microb. Technol., Witholt, B., and Schmid, A. (2003)
53, 283–287. Chemical biotechnology for the specific
24. Di Gennaro, P., Orsini, F., Bernasconi, oxyfunctionalization of hydrocarbons on
S., and Sello, G. (2009) Use of oxi- a technical scale. Biotechnol. Bioeng., 82,
doreductive enzymes in sequential 833–842.