Page 86 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 86

62  3 Monooxygenase-Catalyzed Redox Cascade Biotransformations

                       Gieren, H., and Kula, M.R. (1999) Pilot  biotransformations. New Biotechnol., 25,
                       scale production and isolation of recom-  S112.
                       binant NAD(+)- and NADP(+)-specific  25. Di Gennaro, P., Bernasconi, S., Orsini,
                       formate dehydrogenases. Biotechnol.  F., Corretto, E., and Sello, G. (2010)
                       Bioeng., 64, 187–193.            Multienzymatic preparation of 3-
                     17. Pazmino, D.E.T., Snajdrova, R., Baas,  [(1R)-1-hydroxyethylibenzoic acid and
                       B.J., Ghobrial, M., Mihovilovic, M.D.,  (2S)-hydroxy(phenyl)ethanoic acid.
                       and Fraaije, M.W. (2008) Self-sufficient  Tetrahedron: Asymmetry, 21, 1885–1889.
                       Baeyer–Villiger monooxygenases:  26. Xu, Y., Jia, X., Panke, S., and Li, Z.
                       effective coenzyme regeneration for  (2009) Asymmetric dihydroxylation of
                       biooxygenation by fusion engineering.  aryl olefins by sequential enantiose-
                       Angew. Chem. Int. Ed., 47, 2275–2278.  lective epoxidation and regioselective
                     18. Pazmino, D.E.T., Riebel, A., de Lange,  hydrolysis with tandem biocatalysts.
                       J., Rudroff, F., Mihovilovic, M.D., and  Chem. Commun., 1481–1483.
                       Fraaije, M.W. (2009) Efficient biooxida-  27. Zhang, W., Tang, W.L., Wang, D.I.C.,
                       tions catalyzed by a new generation of  and Li, Z. (2011) Concurrent oxidations
                       self-sufficient Baeyer–Villiger monooxy-  with tandem biocatalysts in one pot:
                       genases. ChemBioChem, 10, 2595–2598.  green, selective and clean oxidations of
                     19. Zhai, X.H., Ma, Y.H., Lai, D.Y., Zhou,  methylene groups to ketones. Chem.
                       S., and Chen, Z.M. (2013) Development  Commun., 47, 3284–3286.
                       of a whole-cell biocatalyst with NADPH  28. Song, J.W., Jeon, E.Y., Song, D.H., Jang,
                       regeneration system for biosulfoxida-  H.Y., Bornscheuer, U.T., Oh, D.K., and
                       tion. J. Ind. Microbiol. Biotechnol., 40,  Park, J.B. (2013) Multistep enzymatic
                       797–803.                         synthesis of long-chain α,ω-dicarboxylic
                     20. Toda, H., Imae, R., and Itoh, N. (2012)  and ω-hydroxycarboxylic acids from
                       Efficient biocatalysis for the production  renewable fatty acids and plant oils.
                       of enantiopure (S)-epoxides using a  Angew. Chem. Int. Ed., 52, 2534–2537.
                       styrene monooxygenase (SMO) and Leif-  29. Kirschner, A., Altenbuchner, J., and
                       sonia alcohol dehydrogenase (LSADH)  Bornscheuer, U.T. (2007) Design of a
                       system. Tetrahedron: Asymmetry, 23,  secondary alcohol degradation pathway
                       1542–1549.                       from Pseudomonas fluorescens DSM
                     21. Tischler, D., Kermer, R., Groning,  50106 in an engineered Escherichia
                       J.A.D., Kaschabek, S.R., van Berkel,  coli. Appl. Microbiol. Biotechnol., 75,
                       W.J.H., and Schlomann, M. (2010)  1095–1101.
                       StyA1 and StyA2B from Rhodococcus  30. Buehler, B., Schmid, A., Hauer, B., and
                       opacus 1CP: a multifunctional styrene  Witholt, B. (2000) Xylene monooxyge-
                       monooxygenase system. J. Bacteriol.,  nase catalyzes the multistep oxygenation
                       192, 5220–5227.                  of toluene and pseudocumene to corre-
                     22. Staudt, S., Bornscheuer, U.T., Menyes,  sponding alcohols, aldehydes, and acids
                       U., Hummel, W., and Gr¨ oger, H.  in Escherichia coli JM101. J. Biol. Chem.,
                       (2013) Direct biocatalytic one-pot-  275, 10085–10092.
                       transformation of cyclohexanol with  31. Buehler, B., Bollhalder, I., Hauer, B.,
                       molecular oxygen into ε-caprolactone.  Witholt, B., and Schmid, A. (2003)
                       Enzyme Microb. Technol., 53, 288–292.  Use of the two-liquid phase concept
                     23. Mallin, H., Wulf, H., and Bornscheuer,  to exploit kinetically controlled multi-
                       U.T. (2013) A self-sufficient     step biocatalysis. Biotechnol. Bioeng., 81,
                       Baeyer–Villiger biocatalysis system  683–694.
                       for the synthesis of ε-caprolactone from  32. Buehler, B., Bollhalder, I., Hauer, B.,
                       cyclohexanol. Enzyme Microb. Technol.,  Witholt, B., and Schmid, A. (2003)
                       53, 283–287.                     Chemical biotechnology for the specific
                     24. Di Gennaro, P., Orsini, F., Bernasconi,  oxyfunctionalization of hydrocarbons on
                       S., and Sello, G. (2009) Use of oxi-  a technical scale. Biotechnol. Bioeng., 82,
                       doreductive enzymes in sequential  833–842.
   81   82   83   84   85   86   87   88   89   90   91