Page 212 - Biodegradable Polyesters
P. 212

190  7 Electrospun Scaffolds of Biodegradable Polyesters: Manufacturing and Biomedical Application

                        electrospunfromanemulsioncon-   release of multiple epidermal induction
                        taining poly (lactic-co-glycolic acid).  factors through core-shell nanofibers
                        Polymer (Guildf), 49 (24), 5294–5299.  for skin regeneration. Eur.J.Pharm.
                    165. Meinel, A.J., Germershaus, O.,  Biopharm., 85 (3 Part A), 689–698.
                        Luhmann, T., Merkle, H.P., and Meinel,  170. Seyednejad, H., Ji, W., Yang, F., van
                        L. (2012) Electrospun matrices for local-  Nostrum, C.F., Vermonden, T., van
                        ized drug delivery: current technologies  den Beucken, J.J. et al. (2012) Coax-
                        and selected biomedical applications.  ially electrospun scaffolds based on
                        Eur. J. Pharm. Biopharm., 81 (1), 1–13.  hydroxyl-functionalized poly(epsilon-
                    166. Vadala, G., Mozetic, P., Rainer, A.,  caprolactone) and loaded with VEGF
                        Centola, M., Loppini, M., Trombetta,  for tissue engineering applications.
                        M. et al. (2012) Bioactive electrospun  Biomacromolecules, 13 (11), 3650–3660.
                        scaffold for annulus fibrosus repair and  171. Nie,H., Soh, B.W.,Fu, Y.C.,and Wang,
                        regeneration. Eur. Spine J., 21 (Suppl 1),  C.H. (2008) Three-dimensional fibrous
                        S20–S26.                        PLGA/HAp composite scaffold for
                    167. Su,Y., Su,Q., Liu, W.,Lim,M.,  BMP-2 delivery. Biotechnol. Bioeng., 99
                        Venugopal, J.R., Mo, X. et al. (2012)  (1), 223–234.
                        Controlled release of bone morpho-  172. Sahoo, S., Ang, L.T., Goh, J.C., and
                        genetic protein 2 and dexamethasone  Toh, S. (2010) Growth factor deliv-
                        loaded in core-shell PLLACL-collagen  ery through electrospun nanofibers in
                        fibers for use in bone tissue engineer-  scaffolds for tissue engineering appli-
                        ing. Acta Biomater., 8 (2), 763–771.  cations. J. Biomed. Mater. Res. A, 93,
                    168. Liu, J.-J., Wang, C.-Y., Wang, J.-G.,  1539–1550.
                        Ruan, H.-J., and Fan, C.-Y. (2010)  173. Kim, K., Luu, Y.K., Chang, C., Fang,
                        Peripheral nerve regeneration   D.,Hsiao, B.S.,Chu,B. et al. (2004)
                        using composite poly(lactic acid-  Incorporation and controlled release
                        caprolactone)/nerve growth factor  of a hydrophilic antibiotic using
                        conduits prepared by coaxial electro-  poly(lactide-co-glycolide)-based electro-
                        spinning. J. Biomed. Mater. Res. A, 96  spun nanofibrous scaffolds. J. Control.
                        (1), 13–20.                     Release, 98 (1), 47–56.
                    169. Jin, G., Prabhakaran, M.P., Kai, D.,
                        and Ramakrishna, S. (2013) Controlled
   207   208   209   210   211   212   213   214   215   216   217