Page 211 - Biodegradable Polyesters
P. 211
References 189
hydroxyapatite. Macromol. Biosci., 10 for reconstruction of bone defects. PLoS
(2), 173–182. One, 6 (9), e25462.
148. Du, F., Wang, H., Zhao, W., Li, D., 156. Park, B.H., Zhou, L., Jang, K.Y., Park,
Kong, D., Yang, J. et al. (2012) Gradient H.S., Lim, J.M., Yoon, S.J. et al. (2012)
nanofibrous chitosan/poly varepsilon- Enhancement of tibial regeneration in
caprolactone scaffolds as extracellular a rat model by adipose-derived stromal
microenvironments for vascular tis- cells in a PLGA scaffold. Bone, 51 (3),
sue engineering. Biomaterials, 33 (3), 313–323.
762–770. 157. Toyokawa, N., Fujioka, H., Kokubu, T.,
149. Shafiee, A., Soleimani, M., Chamheidari, Nagura,I., Inui,A., Sakata,R. et al.
G.A., Seyedjafari, E., Dodel, M., (2010) Electrospun synthetic polymer
Atashi, A. et al. (2011) Electrospun scaffold for cartilage repair without
nanofiber-based regeneration of carti- cultured cells in an animal model.
lage enhanced by mesenchymal stem Arthroscopy, 26 (3), 375–383.
cells. J. Biomed. Mater. Res. A, 99 (3), 158. Andrychowski, J., Frontczak-Baniewicz,
467–478. M., Sulejczak, D., Kowalczyk, T.,
150. Jayasinghe, S.N., Qureshi, A.N., and Chmielewski, T., Czernicki, Z. et al.
Eagles, P.A. (2006) Electrohydrodynamic (2013) Nanofiber nets in prevention
jet processing: an advanced electric- of cicatrisation in spinal procedures.
Experimental study. Folia Neuropathol.,
field-driven jetting phenomenon for
51 (2), 147–157.
processing living cells. Small, 2 (2),
159. Yu, W., Zhao, W., Zhu, C., Zhang, X.,
216–219.
151. Braghirolli, D.I., Zamboni, F., Ye, D., Zhang, W. et al. (2011) Sciatic
nerve regeneration in rats by a promis-
Chagastelles, P.C., Moura, D.J., Saffi,
ing electrospun collagen/poly(epsilon-
J., Henriques, J.A. et al. (2013) Bio-
caprolactone) nerve conduit with
electrospraying of human mesenchymal
tailored degradation rate. BMC Neu-
stem cells: an alternative for tissue
rosci., 12, 68.
engineering. Biomicrofluidics, 7 (4),
160. Prabhakaran, M.P., Venugopal, J., Chan,
44130.
C.K., and Ramakrishna, S. (2008) Sur-
152. Gupta, D., Venugopal, J., Mitra, S., face modified electrospun nanofibrous
Giri Dev, V.R., and Ramakrishna, S. scaffolds for nerve tissue engineering.
(2009) Nanostructured biocompos-
Nanotechnology, 19 (45), 455102.
ite substrates by electrospinning and
161. Fredenberg, S., Wahlgren, M., Reslow,
electrospraying for the mineralization
M., and Axelsson, A. (2011) The mech-
of osteoblasts. Biomaterials, 30 (11),
anisms of drug release in poly(lactic-
2085–2094. co-glycolic acid)-based drug delivery
153. Naderi, H., Matin, M.M., and Bahrami,
systems--a review. Int. J. Pharm., 415
A.R. (2011) Review paper: critical issues (1–2), 34–52.
in tissue engineering: biomaterials, cell 162. Wei, G., Jin, Q., Giannobile, W.V., and
sources, angiogenesis, and drug deliv- Ma, P.X. (2006) Nano-fibrous scaffold
ery systems. J. Biomater. Appl., 26 (4), for controlled delivery of recombinant
383–417. human PDGF-BB. J. Control. Release,
154. Tillman, B.W., Yazdani, S.K., Lee, S.J., 112 (1), 103–110.
Geary, R.L., Atala, A., and Yoo, J.J. 163. Ji,W., Sun, Y.,Yang, F.,van den
(2009) The in vivo stability of electro- Beucken, J.J., Fan, M., Chen, Z. et al.
spun polycaprolactone-collagen scaffolds (2011) Bioactive electrospun scaffolds
in vascular reconstruction. Biomaterials, delivering growth factors and genes for
30 (4), 583–588. tissue engineering applications. Pharm.
155. Schofer, M.D., Roessler, P.P., Schaefer, Res., 28 (6), 1259–1272.
J., Theisen, C., Schlimme, S., 164. Liao, Y., Zhang, L., Gao, Y., Zhu, Z.T.,
Heverhagen, J.T. et al. (2011) Elec- and Fong, H. (2008) Preparation, char-
trospun PLLA nanofiber scaffolds and acterization, and encapsulation/release
their use in combination with BMP-2 studies of a composite nanofiber mat