Page 208 - Biodegradable Polyesters
P. 208

186  7 Electrospun Scaffolds of Biodegradable Polyesters: Manufacturing and Biomedical Application

                        polylactide. Anal. Bioanal. Chem., 381  of polybutadiene. Polymer, 47 (1),
                        (3), 547–556.                   156–165.
                     96. Liu, C., Xia, Z., and Czernuszka, J.T.  106. Deng, J.P., Wang, L.F., Liu, L.Y., and
                        (2007) Design and development of  Yang, W.T. (2009) Developments and
                        three-dimensional scaffolds for tissue  new applications of UV-induced surface
                        engineering. Chem.Eng.Res.Des., 85  graft polymerizations. Prog. Polym. Sci.,
                        (7), 1051–1064.                 34 (2), 156–193.
                     97. Weibel, D.E., Kessler, F., and da  107. Daniloska, V., Blazevska-Gilev, J.,
                        Silva Mota, G.V. (2010) Selective sur-  Dimova, V., Fajgar, R., and Tomovska,
                        face functionalization of polystyrene by  R. (2010) UV light induced surface
                        inner-shell monochromatic irradiation  modification of HDPE films with bioac-
                        and oxygen exposure. Polym. Chem., 1,  tive compounds. Appl. Surf. Sci., 256
                        645–649.                        (7), 2276–2283.
                     98. Kessler, F.,Kûhn, S.,Radtke, C.,and  108. Garnica-Palafox, I.M., Sanchez-Arevalo,
                        Weibel, D.E. (2013) Controlling the  F.M.,Velasquillo,C., Garcia-Carvajal,
                        surface wettability of poly(sulfone) films  Z.Y., Garcia-Lopez, J., Ortega-Sanchez,
                        by UV-assisted treatment: benefits in  C. et al. (2014) Mechanical and struc-
                        relation to plasma treatment. Polymer.
                                                        tural response of a hybrid hydrogel
                        Int., 62, 310–318.
                                                        basedonchitosanand poly(vinyl alco-
                     99. Weibel, D.E., Michels, A.F., Horowitz,
                                                        hol) cross-linked with epichlorohydrin
                        F., Cavalheiro, R.D.S., and Mota, G.V.S.
                                                        for potential use in tissue engineering.
                        (2009) Ultraviolet-induced surface  J. Biomater. Sci., Polym. Ed., 25 (1),
                        modification of Polyurethane films  32–50.
                        in the presence of oxygen or acrylic
                                                     109. Yang,X., Cui, C.,Tong, Z.,
                        acid vapours. Thin Solid Films, 517,  Sabanayagam, C.R., and Jia, X. (2013)
                        5489–5495.
                                                        Poly(epsilon-caprolactone)-based
                    100. Wu, B.Q. (2006) Photomask plasma
                                                        copolymers bearing pendant cyclic
                        etching: a review. J. Vac. Sci. Technol., B,
                                                        ketals and reactive acrylates for the fab-
                        24 (1), 1–15.
                                                        rication of photocrosslinked elastomers.
                    101. Heckele, M. and Schomburg, W.K.
                        (2004) Review on micro molding of  Acta Biomater., 9 (9), 8232–8244.
                        thermoplastic polymers. J. Micromech.  110. Andren, O.C.J., Walter, M.V., Yang,
                                                        T., Hult, A., and Malkoch, M. (2013)
                        Microeng., 14 (3), R1–R14.
                                                        Multifunctional Poly(ethylene gly-
                    102. Basting, D. and Stamm, U. (2001) The
                                                        col): synthesis, characterization, and
                        development of excimer laser technol-
                                                        potential applications of dendritic-
                        ogy – history and future prospects, Z.
                        Phys. Chem. -Int. J. Res. Phys. Chem.  linear-dendritic block copolymer
                        Chem. Phys., 215, 1575–1599.    hybrids. Macromolecules, 46 (10),
                    103. Spanring, J., Buchgraber, C., Ebel,  3726–3736.
                        M.F., Svagera, R., and Kern, W. (2005)  111. Ye, L., Wu, X., Geng, X., Duan, Y.-H.,
                        UV assisted surface modification of  Gu, Y.-Q., Zhang, A.-Y. et al. (2010)
                        polystyrene in the presence of trialkylsi-  Initiator-free photocrosslinking of elec-
                        lanes. Macromol. Chem. Phys., 206 (22),  trospun biodegradable polyester fiber
                        2248–2256.                      based tubular scaffolds and their cell
                    104. Buchgraber, C., Spanring, J., Kern, W.,  affinity for vascular tissue engineering.
                        and Pogantsch, A. (2005) UV-induced  Chin. J. Polym. Sci., 28 (5), 829–840.
                        modification of conjugated polymers  112. Martins, A., Gang, W., Pinho, E.D.,
                        using gaseous organosilanes. Macromol.  Rebollar, E., Chiussi, S., Reis, R.L.
                        Chem. Phys., 206 (23), 2362–2372.  et al. (2010) Surface modification of a
                    105. Spanring, J., Buchgraber, C., Ebel,  biodegradable composite by UV laser
                        M.F., Svagera, R., and Kern, W. (2006)  ablation: in vitro biological perfor-
                        Trialkylsilanes as reagents for the  mance. J. Tissue Eng. Regen. Med., 4 (6),
                        UV-induced surface modification  444–453.
   203   204   205   206   207   208   209   210   211   212   213