Page 208 - Biodegradable Polyesters
P. 208
186 7 Electrospun Scaffolds of Biodegradable Polyesters: Manufacturing and Biomedical Application
polylactide. Anal. Bioanal. Chem., 381 of polybutadiene. Polymer, 47 (1),
(3), 547–556. 156–165.
96. Liu, C., Xia, Z., and Czernuszka, J.T. 106. Deng, J.P., Wang, L.F., Liu, L.Y., and
(2007) Design and development of Yang, W.T. (2009) Developments and
three-dimensional scaffolds for tissue new applications of UV-induced surface
engineering. Chem.Eng.Res.Des., 85 graft polymerizations. Prog. Polym. Sci.,
(7), 1051–1064. 34 (2), 156–193.
97. Weibel, D.E., Kessler, F., and da 107. Daniloska, V., Blazevska-Gilev, J.,
Silva Mota, G.V. (2010) Selective sur- Dimova, V., Fajgar, R., and Tomovska,
face functionalization of polystyrene by R. (2010) UV light induced surface
inner-shell monochromatic irradiation modification of HDPE films with bioac-
and oxygen exposure. Polym. Chem., 1, tive compounds. Appl. Surf. Sci., 256
645–649. (7), 2276–2283.
98. Kessler, F.,Kûhn, S.,Radtke, C.,and 108. Garnica-Palafox, I.M., Sanchez-Arevalo,
Weibel, D.E. (2013) Controlling the F.M.,Velasquillo,C., Garcia-Carvajal,
surface wettability of poly(sulfone) films Z.Y., Garcia-Lopez, J., Ortega-Sanchez,
by UV-assisted treatment: benefits in C. et al. (2014) Mechanical and struc-
relation to plasma treatment. Polymer.
tural response of a hybrid hydrogel
Int., 62, 310–318.
basedonchitosanand poly(vinyl alco-
99. Weibel, D.E., Michels, A.F., Horowitz,
hol) cross-linked with epichlorohydrin
F., Cavalheiro, R.D.S., and Mota, G.V.S.
for potential use in tissue engineering.
(2009) Ultraviolet-induced surface J. Biomater. Sci., Polym. Ed., 25 (1),
modification of Polyurethane films 32–50.
in the presence of oxygen or acrylic
109. Yang,X., Cui, C.,Tong, Z.,
acid vapours. Thin Solid Films, 517, Sabanayagam, C.R., and Jia, X. (2013)
5489–5495.
Poly(epsilon-caprolactone)-based
100. Wu, B.Q. (2006) Photomask plasma
copolymers bearing pendant cyclic
etching: a review. J. Vac. Sci. Technol., B,
ketals and reactive acrylates for the fab-
24 (1), 1–15.
rication of photocrosslinked elastomers.
101. Heckele, M. and Schomburg, W.K.
(2004) Review on micro molding of Acta Biomater., 9 (9), 8232–8244.
thermoplastic polymers. J. Micromech. 110. Andren, O.C.J., Walter, M.V., Yang,
T., Hult, A., and Malkoch, M. (2013)
Microeng., 14 (3), R1–R14.
Multifunctional Poly(ethylene gly-
102. Basting, D. and Stamm, U. (2001) The
col): synthesis, characterization, and
development of excimer laser technol-
potential applications of dendritic-
ogy – history and future prospects, Z.
Phys. Chem. -Int. J. Res. Phys. Chem. linear-dendritic block copolymer
Chem. Phys., 215, 1575–1599. hybrids. Macromolecules, 46 (10),
103. Spanring, J., Buchgraber, C., Ebel, 3726–3736.
M.F., Svagera, R., and Kern, W. (2005) 111. Ye, L., Wu, X., Geng, X., Duan, Y.-H.,
UV assisted surface modification of Gu, Y.-Q., Zhang, A.-Y. et al. (2010)
polystyrene in the presence of trialkylsi- Initiator-free photocrosslinking of elec-
lanes. Macromol. Chem. Phys., 206 (22), trospun biodegradable polyester fiber
2248–2256. based tubular scaffolds and their cell
104. Buchgraber, C., Spanring, J., Kern, W., affinity for vascular tissue engineering.
and Pogantsch, A. (2005) UV-induced Chin. J. Polym. Sci., 28 (5), 829–840.
modification of conjugated polymers 112. Martins, A., Gang, W., Pinho, E.D.,
using gaseous organosilanes. Macromol. Rebollar, E., Chiussi, S., Reis, R.L.
Chem. Phys., 206 (23), 2362–2372. et al. (2010) Surface modification of a
105. Spanring, J., Buchgraber, C., Ebel, biodegradable composite by UV laser
M.F., Svagera, R., and Kern, W. (2006) ablation: in vitro biological perfor-
Trialkylsilanes as reagents for the mance. J. Tissue Eng. Regen. Med., 4 (6),
UV-induced surface modification 444–453.