Page 204 - Biodegradable Polyesters
P. 204

182  7 Electrospun Scaffolds of Biodegradable Polyesters: Manufacturing and Biomedical Application

                        delivery and tissue engineering. Bioma-  32. Prabhakaran, M.P., Venugopal, J.R.,
                        terials, 29 (13), 1989–2006.    Chyan, T.T., Hai, L.B., Chan, C.K., Lim,
                     24. Dan Li, Y.X. (2004) Electrospinning of  A.Y. et al. (2008) Electrospun biocom-
                        nanofibers: reinventing the wheel? Adv.  posite nanofibrous scaffolds for neural
                        Mater. Rev., 16 (14), 1151–1170.  tissue engineering. Tissue Eng. Part A,
                     25. Zhao, L., He, C., Gao, Y., Cen, L., Cui,  14 (11), 1787–1797.
                        L., and Cao, Y. (2008) Preparation and  33. Mrowczynski, W., Mugnai, D., de
                        cytocompatibility of PLGA scaffolds  Valence, S., Tille, J.C., Khabiri, E.,
                        with controllable fiber morphology and  Cikirikcioglu, M. et al. (2013) Porcine
                        diameter using electrospinning method.  carotid artery replacement with
                        J. Biomed. Mater. Res. B Appl. Biomater.,  biodegradable electrospun poly-e-
                        87 (1), 26–34.                  caprolactone vascular prosthesis. J. Vasc.
                     26. Fong, H., Chun, I., and Reneker, D.H.  Surg., 59 (1), 210–219.
                        (1999) Beaded nanofibers formed  34. Jung, S.M., Kim, D.S., Ju, J.H., and Shin,
                        during electrospinning. Polymer, 40,  H.S. (2013) Assessment of Spirulina-
                        4585–4592.                      PCL nanofiber for the regeneration of
                     27. Braghirolli, D.I., Steffens, D.,  dermal fibroblast layers. In Vitro Cell.
                        Quintiliano, K., Acasigua, G.A., Gamba,  Dev. Biol. Anim., 49 (1), 27–33.
                        D.,Fleck,R.A. et al. (2013) The effect  35. Panseri, S., Cunha, C., Lowery, J.,
                        of sterilization methods on electron-  Del Carro, U., Taraballi, F., Amadio,
                        spun poly(lactide-co-glycolide) and  S. et al. (2008) Electrospun micro-
                        subsequent adhesion efficiency of mes-  and nanofiber tubes for functional
                        enchymal stem cells. J. Biomed. Mater.  nervous regeneration in sciatic nerve
                        Res. B Appl. Biomater., 102, 700–708.  transections. BMC Biotechnol., 8, 39.
                     28. Shin, H.J., Lee, C.H., Cho, I.H., Kim,  36. McCullen, S.D.,Autefage, H.,Callanan,
                        Y.J., Lee, Y.J., Kim, I.A. et al. (2006)  A., Gentleman, E., and Stevens, M.M.
                        Electrospun PLGA nanofiber scaffolds  (2012) Anisotropic fibrous scaffolds for
                        for articular cartilage reconstruction:  articular cartilage regeneration. Tissue
                        mechanical stability, degradation and  Eng. Part A, 18 (19–20), 2073–2083.
                        cellular responses under mechanical  37. Chow, W.N., Simpson, D.G., Bigbee,
                        stimulation in vitro. J. Biomater. Sci.  J.W., and Colello, R.J. (2007) Evaluating
                        Polym. Ed., 17 (1–2), 103–119.  neuronal and glial growth on electro-
                     29. Inanc, B., Arslan, Y.E., Seker, S., Elcin,  spun polarized matrices: bridging the
                        A.E., and Elcin, Y.M. (2009) Periodontal  gap in percussive spinal cord injuries.
                        ligament cellular structures engineered  Neuron Glia Biol., 3 (2), 119–126.
                        with electrospun poly(DL-lactide-  38. Ye, L., Wu, X., Mu, Q., Chen, B., Duan,
                        co-glycolide) nanofibrous membrane  Y., Geng, X. et al. (2010) Heparin-
                        scaffolds. J. Biomed. Mater. Res. A, 90  conjugated PCL scaffolds fabricated by
                        (1), 186–195.                   electrospinning and loaded with fibrob-
                     30. Steffens, D., Lersch, M., Rosa, A., Scher,  last growth factor 2. J. Biomater. Sci.
                        C., Crestani, T., Morais, M.G. et al.  Polym. Ed., 22, 389–406.
                        (2013) A new biomaterial of nanofibers  39. Wang, H.B., Mullins, M.E., Cregg, J.M.,
                        with the microalga Spirulina as scaf-  McCarthy, C.W., and Gilbert, R.J. (2010)
                        folds to cultivate with stem cells for  Varying the diameter of aligned electro-
                        use in tissue engineering. J. Biomed.  spun fibers alters neurite outgrowth and
                        Nanotechnol., 9 (4), 710–718.   Schwann cell migration. Acta Biomater.,
                     31. Centola, M., Rainer, A., Spadaccio,  6 (8), 2970–2978.
                        C., De Porcellinis, S., Genovese, J.A.,  40. Jin, G., Prabhakaran, M.P., and
                        and Trombetta, M. (2010) Combining  Ramakrishna, S. (2011) Stem cell dif-
                        electrospinning and fused deposition  ferentiation to epidermal lineages on
                        modeling for the fabrication of a hybrid  electrospun nanofibrous substrates for
                        vascular graft. Biofabrication, 2 (1),  skin tissue engineering. Acta Biomater.,
                        014102.                         7 (8), 3113–3122.
   199   200   201   202   203   204   205   206   207   208   209