Page 203 - Biodegradable Polyesters
P. 203

References  181

                3. Hutmacher, D.W. (2001) Scaffold design  the production of tissue engineering
                  and fabrication technologies for engi-  scaffolds. Eur. Cell. Mater., 5, 29–39;
                  neering tissues–state of the art and  discussion -40.
                  future perspectives. J. Biomater. Sci.  14. Cheng, Q., Lee, B.L., Komvopoulos, K.,
                  Polym. Ed., 12 (1), 107–124.    Yan, Z., and Li, S. (2013) Plasma sur-
                4. Geetha, M., Singh, A.K., Asokamani,  face chemical treatment of electrospun
                  R., and Gogia, A.K. (2009) Ti based  poly(L-lactide) microfibrous scaffolds
                  biomaterials, the ultimate choice for  for enhanced cell adhesion, growth,
                  orthopaedic implants –a review. Prog.  and infiltration. Tissue Eng. Part A, 19
                  Mater. Sci., 54 (3), 397–425.   (9–10), 1188–1198.
                5. Niinomi, M., Nakai, M., and Hieda, J.  15. Zhan, J., Singh, A., Zhang, Z., Huang,
                  (2012) Development of new metallic  L., and Elisseeff, J.H. (2012) Multifunc-
                  alloys for biomedical applications. Acta  tional aliphatic polyester nanofibers for
                  Biomater., 8 (11), 3888–3903.   tissue engineering. Biomatter, 2 (4),
                6. Ohtsuki, C., Kamitakahara, M., and  202–212.
                  Miyazaki, T. (2009) Bioactive ceramic-  16. Zander, N.E., Orlicki, J.A., Rawlett,
                  based materials with designed reactivity  A.M., and Beebe, T.P. Jr., (2012) Quan-
                  for bone tissue regeneration. J. R. Soc.  tification of protein incorporated into
                  Interface, 6, S349–S360.        electrospun polycaprolactone tissue
                7. Liu, X.H., Holzwarth, J.M., and Ma,
                                                  engineering scaffolds. ACSAppl.Mater.
                  P.X. (2012) Functionalized synthetic
                                                  Interfaces, 4 (4), 2074–2081.
                  biodegradable polymer scaffolds for  17. Liang, D., Hsiao, B.S., and Chu,
                  tissue engineering. Macromol. Biosci.  B. (2007) Functional electrospun
                  Rev., 12 (7), 911–919.
                                                  nanofibrous scaffolds for biomedical
                8. Kumbar, S.G., James, R., Nukavarapu,
                                                  applications. Adv. Drug Deliv. Rev., 59
                  S.P., and Laurencin, C.T. (2008) Electro-
                                                  (14), 1392–1412.
                  spun nanofiber scaffolds: engineering
                                                18. Ekaputra, A.K., Prestwich, G.D., Cool,
                  soft tissues. Biomed. Mater., 3 (3),
                                                  S.M., and Hutmacher, D.W. (2011) The
                  034002.
                                                  three-dimensional vascularization of
                9. Zanatta, G., Rudisile, M., Camassola,
                  M.,Wendorff,J., Nardi, N.,Gottfried,  growth factor-releasing hybrid scaffold
                  C. et al. (2012) Mesenchymal stem  of poly (epsilon-caprolactone)/collagen
                  cell adherence on poly(D, L-lactide-  fibers and hyaluronic acid hydrogel.
                                                  Biomaterials, 32 (32), 8108–8117.
                  co-glycolide) nanofibers scaffold is
                                                19. Ramakrishnna, S., Fujihara, K., Teo,
                  integrin-beta 1 receptor dependent. J.
                                                  W.-E., Lim, T.-C., and Ma, Z. (2005)
                  Biomed. Nanotechnol., 8 (2), 211–218.
               10. Seyednejad, H., Ghassemi, A.H., van  An Introduction to Electrospinning and
                  Nostrum, C.F., Vermonden, T., and  Nanofibers, World Scientific Publishing
                  Hennink, W.E. (2011) Functional  Co. Pte. Ltd., Singapore.
                  aliphatic polyesters for biomedical and  20. Kim, S.J., Jang, D.H., Park, W.H., and
                  pharmaceutical applications. J. Control.  Min, B. (2010) Fabrication and char-
                  Release, 152 (1), 168–176.      acterization of 3-dimensional PLGA
               11. Lakshmi, S. and Nair, C.T.L. (2007)  nanofiber/microfiber composite scaf-
                  Biodegradable polymers as biomaterials.  folds. Polymer, 51, 1320–1327.
                  Prog. Polym. Sci., 32, 762–798.  21. Bhardwaj, N. and Kundu, S.C. (2010)
               12. Yoo, H.S., Kim, T.G., and Park, T.G.  Electrospinning: a fascinating fiber fab-
                  (2009) Surface-functionalized electro-  rication technique. Biotechnol. Adv., 28
                  spun nanofibers for tissue engineering  (3), 325–347.
                  and drug delivery. Adv. Drug Deliv. Rev.,  22. Wendorff, J.H., Agarwal, S., and
                  61 (12), 1033–1042.             Greiner, A. (2012) Electrospinning:
               13. Sachlos, E. and Czernuszka, J.T. (2003)  Materials, Processing and Applications,
                  Making tissue engineering scaffolds  Wiley-VCH Verlag GmbH, Weinheim.
                  work. Review: the application of solid  23. Sill, T.J. and von Recum, H.A. (2008)
                  freeform fabrication technology to  Electrospinning: applications in drug
   198   199   200   201   202   203   204   205   206   207   208