Page 203 - Biodegradable Polyesters
P. 203
References 181
3. Hutmacher, D.W. (2001) Scaffold design the production of tissue engineering
and fabrication technologies for engi- scaffolds. Eur. Cell. Mater., 5, 29–39;
neering tissues–state of the art and discussion -40.
future perspectives. J. Biomater. Sci. 14. Cheng, Q., Lee, B.L., Komvopoulos, K.,
Polym. Ed., 12 (1), 107–124. Yan, Z., and Li, S. (2013) Plasma sur-
4. Geetha, M., Singh, A.K., Asokamani, face chemical treatment of electrospun
R., and Gogia, A.K. (2009) Ti based poly(L-lactide) microfibrous scaffolds
biomaterials, the ultimate choice for for enhanced cell adhesion, growth,
orthopaedic implants –a review. Prog. and infiltration. Tissue Eng. Part A, 19
Mater. Sci., 54 (3), 397–425. (9–10), 1188–1198.
5. Niinomi, M., Nakai, M., and Hieda, J. 15. Zhan, J., Singh, A., Zhang, Z., Huang,
(2012) Development of new metallic L., and Elisseeff, J.H. (2012) Multifunc-
alloys for biomedical applications. Acta tional aliphatic polyester nanofibers for
Biomater., 8 (11), 3888–3903. tissue engineering. Biomatter, 2 (4),
6. Ohtsuki, C., Kamitakahara, M., and 202–212.
Miyazaki, T. (2009) Bioactive ceramic- 16. Zander, N.E., Orlicki, J.A., Rawlett,
based materials with designed reactivity A.M., and Beebe, T.P. Jr., (2012) Quan-
for bone tissue regeneration. J. R. Soc. tification of protein incorporated into
Interface, 6, S349–S360. electrospun polycaprolactone tissue
7. Liu, X.H., Holzwarth, J.M., and Ma,
engineering scaffolds. ACSAppl.Mater.
P.X. (2012) Functionalized synthetic
Interfaces, 4 (4), 2074–2081.
biodegradable polymer scaffolds for 17. Liang, D., Hsiao, B.S., and Chu,
tissue engineering. Macromol. Biosci. B. (2007) Functional electrospun
Rev., 12 (7), 911–919.
nanofibrous scaffolds for biomedical
8. Kumbar, S.G., James, R., Nukavarapu,
applications. Adv. Drug Deliv. Rev., 59
S.P., and Laurencin, C.T. (2008) Electro-
(14), 1392–1412.
spun nanofiber scaffolds: engineering
18. Ekaputra, A.K., Prestwich, G.D., Cool,
soft tissues. Biomed. Mater., 3 (3),
S.M., and Hutmacher, D.W. (2011) The
034002.
three-dimensional vascularization of
9. Zanatta, G., Rudisile, M., Camassola,
M.,Wendorff,J., Nardi, N.,Gottfried, growth factor-releasing hybrid scaffold
C. et al. (2012) Mesenchymal stem of poly (epsilon-caprolactone)/collagen
cell adherence on poly(D, L-lactide- fibers and hyaluronic acid hydrogel.
Biomaterials, 32 (32), 8108–8117.
co-glycolide) nanofibers scaffold is
19. Ramakrishnna, S., Fujihara, K., Teo,
integrin-beta 1 receptor dependent. J.
W.-E., Lim, T.-C., and Ma, Z. (2005)
Biomed. Nanotechnol., 8 (2), 211–218.
10. Seyednejad, H., Ghassemi, A.H., van An Introduction to Electrospinning and
Nostrum, C.F., Vermonden, T., and Nanofibers, World Scientific Publishing
Hennink, W.E. (2011) Functional Co. Pte. Ltd., Singapore.
aliphatic polyesters for biomedical and 20. Kim, S.J., Jang, D.H., Park, W.H., and
pharmaceutical applications. J. Control. Min, B. (2010) Fabrication and char-
Release, 152 (1), 168–176. acterization of 3-dimensional PLGA
11. Lakshmi, S. and Nair, C.T.L. (2007) nanofiber/microfiber composite scaf-
Biodegradable polymers as biomaterials. folds. Polymer, 51, 1320–1327.
Prog. Polym. Sci., 32, 762–798. 21. Bhardwaj, N. and Kundu, S.C. (2010)
12. Yoo, H.S., Kim, T.G., and Park, T.G. Electrospinning: a fascinating fiber fab-
(2009) Surface-functionalized electro- rication technique. Biotechnol. Adv., 28
spun nanofibers for tissue engineering (3), 325–347.
and drug delivery. Adv. Drug Deliv. Rev., 22. Wendorff, J.H., Agarwal, S., and
61 (12), 1033–1042. Greiner, A. (2012) Electrospinning:
13. Sachlos, E. and Czernuszka, J.T. (2003) Materials, Processing and Applications,
Making tissue engineering scaffolds Wiley-VCH Verlag GmbH, Weinheim.
work. Review: the application of solid 23. Sill, T.J. and von Recum, H.A. (2008)
freeform fabrication technology to Electrospinning: applications in drug