Page 206 - Biodegradable Polyesters
P. 206

184  7 Electrospun Scaffolds of Biodegradable Polyesters: Manufacturing and Biomedical Application

                     58. Yang,J., Wan, Y.Q.,Tu, C.F.,Cai,Q.,  68. Shen, H., Hu, X., Yang, F., Bei, J., and
                        Bei, J.Z., and Wang, S.G. (2003) Enhanc-  Wang, S. (2007) Combining oxygen
                        ing the cell affinity of macroporous  plasma treatment with anchorage of
                        poly(L-lactide) cell scaffold by a con-  cationized gelatin for enhancing cell
                        venient surface modification method.  affinity of poly(lactide-co-glycolide).
                        Polym. Int., 52 (12), 1892–1899.  Biomaterials, 28 (29), 4219–4230.
                     59. Cai, K.Y., Yao, K.D., Cui, Y.L., Yang,  69. Chu, P.K. (2013) Surface engineering
                        Z.M., Li, X.Q., Xie, H.Q. et al. (2002)  and modification of biomaterials. Thin
                        Influence of different surface modifi-
                                                        Solid Films, 528, 93–105.
                        cation treatments on poly(D,L-lactic  70. Wu,S., Liu, X.,Yeung,A., Yeung,
                        acid) with silk fibroin and their effects  K.W.K., Kao, R.Y.T., Wu, G. et al. (2011)
                        on the culture of osteoblast in vitro.
                                                        Plasma-modified biomaterials for self-
                        Biomaterials, 23 (7), 1603–1611.
                     60. Croll, T.I., O’Connor, A.J., Stevens,  antimicrobial applications. ACS Appl.
                                                        Mater. Interfaces, 3 (8), 2851–2860.
                        G.W., and Cooper-White, J.J. (2004)
                                                     71. Armentano, I., Dottori, M., Fortunati,
                        Controllable surface modification of
                        poly(lactic-co-glycolic acid) (PLGA)  E., Mattioli, S., and Kenny, J.M.
                        by hydrolysis or aminolysis I: physi-  (2010) Biodegradable polymer matrix
                                                        nanocomposites for tissue engineering:
                        cal, chemical, and theoretical aspects.
                        Biomacromolecules, 5 (2), 463–473.  areview. Polym. Degrad. Stab., 95 (11),
                     61. Goddard, J.M. and Hotchkiss, J.H.  2126–2146.
                        (2007) Polymer surface modification for  72. Rasal, R.M., Janorkar, A.V., and Hirt,
                        the attachment of bioactive compounds.  D.E. (2010) Poly(lactic acid) modi-
                        Prog. Polym. Sci., 32 (7), 698–725.  fications. Prog. Polym. Sci., 35 (3),
                     62. Chan, C.M., Ko, T.M., and Hiraoka, H.  338–356.
                        (1996) Polymer surface modification by  73. Ratzinger, G.,Fillafer, C.,Kerleta,V.,
                        plasmas and photons. Surf.Sci.Rep., 24  Wirth, M., and Gabor, F. (2010) The
                        (1–2), 3–54.                    role of surface functionalization in the
                     63. Denes, F.S. and Manolache, S. (2004)  design of PLGA micro- and nanoparti-
                        Macromolecular plasma-chemistry: an  cles. Crit. Rev. Ther. Drug Carrier Syst.,
                        emerging field of polymer science. Prog.  27 (1), 1–83.
                        Polym. Sci., 29 (8), 815–885.  74. Kalia, S., Kaith, B.S., and Kaur, I. (2009)
                     64. Fisher, E.R. (2004) A review of plasma-  Pretreatments of natural fibers and their
                        surface interactions during processing of  application as reinforcing material in
                        polymeric materials measured using the  polymer composites-a review. Polym.
                        IRIS technique. Plasma Process. Polym.,
                                                        Eng. Sci., 49 (7), 1253–1272.
                        1 (1), 13–27.                75. Vasita, R., Shanmugam, K., and Katti,
                     65. Siow, K.S., Britcher, L., Kumar, S., and  D.S. (2008) Improved biomaterials for
                        Griesser, H.J. (2006) Plasma methods
                                                        tissue engineering applications: surface
                        for the generation of chemically reactive  modification of polymers. Curr. Top.
                        surfaces for biomolecule immobilization  Med. Chem., 8 (4), 341–353.
                        and cell colonization – a review. Plasma
                                                     76. Shah, J.J., Geist, J., Locascio, L.E.,
                        Process. Polym., 3 (6–7), 392–418.
                     66. Ho,M.-H.,Hou,L.-T.,Tu, C.-Y., Hsieh,  Gaitan, M., Rao, M.V., and Vreeland,
                                                        W.N. (2006) Surface modification of
                        H.-J., Lai, J.-Y., Chen, W.-J. et al. (2006)
                                                        poly(methyl methacrylate) for improved
                        Promotion of cell affinity of porous
                        PLLA scaffolds by immobilization of  adsorption of wall coating polymers for
                        RGD peptides via plasma treatment.  microchip electrophoresis. Electrophore-
                        Macromol. Biosci., 6 (1), 90–98.  sis, 27 (19), 3788–3796.
                     67. Morent, R., De Geyter, N., Desmet, T.,  77. Najafi, E., Kim, J.Y., Han, S.H., and Shin,
                        Dubruel, P., and Leys, C. (2011) Plasma  K. (2006) UV-ozone treatment of multi-
                        surface modification of biodegradable  walled carbon nanotubes for enhanced
                        polymers: a review. Plasma Process.  organic solvent dispersion. Colloids
                        Polym., 8 (3), 171–190.         Surf., A, 284, 373–378.
   201   202   203   204   205   206   207   208   209   210   211