Page 206 - Biodegradable Polyesters
P. 206
184 7 Electrospun Scaffolds of Biodegradable Polyesters: Manufacturing and Biomedical Application
58. Yang,J., Wan, Y.Q.,Tu, C.F.,Cai,Q., 68. Shen, H., Hu, X., Yang, F., Bei, J., and
Bei, J.Z., and Wang, S.G. (2003) Enhanc- Wang, S. (2007) Combining oxygen
ing the cell affinity of macroporous plasma treatment with anchorage of
poly(L-lactide) cell scaffold by a con- cationized gelatin for enhancing cell
venient surface modification method. affinity of poly(lactide-co-glycolide).
Polym. Int., 52 (12), 1892–1899. Biomaterials, 28 (29), 4219–4230.
59. Cai, K.Y., Yao, K.D., Cui, Y.L., Yang, 69. Chu, P.K. (2013) Surface engineering
Z.M., Li, X.Q., Xie, H.Q. et al. (2002) and modification of biomaterials. Thin
Influence of different surface modifi-
Solid Films, 528, 93–105.
cation treatments on poly(D,L-lactic 70. Wu,S., Liu, X.,Yeung,A., Yeung,
acid) with silk fibroin and their effects K.W.K., Kao, R.Y.T., Wu, G. et al. (2011)
on the culture of osteoblast in vitro.
Plasma-modified biomaterials for self-
Biomaterials, 23 (7), 1603–1611.
60. Croll, T.I., O’Connor, A.J., Stevens, antimicrobial applications. ACS Appl.
Mater. Interfaces, 3 (8), 2851–2860.
G.W., and Cooper-White, J.J. (2004)
71. Armentano, I., Dottori, M., Fortunati,
Controllable surface modification of
poly(lactic-co-glycolic acid) (PLGA) E., Mattioli, S., and Kenny, J.M.
by hydrolysis or aminolysis I: physi- (2010) Biodegradable polymer matrix
nanocomposites for tissue engineering:
cal, chemical, and theoretical aspects.
Biomacromolecules, 5 (2), 463–473. areview. Polym. Degrad. Stab., 95 (11),
61. Goddard, J.M. and Hotchkiss, J.H. 2126–2146.
(2007) Polymer surface modification for 72. Rasal, R.M., Janorkar, A.V., and Hirt,
the attachment of bioactive compounds. D.E. (2010) Poly(lactic acid) modi-
Prog. Polym. Sci., 32 (7), 698–725. fications. Prog. Polym. Sci., 35 (3),
62. Chan, C.M., Ko, T.M., and Hiraoka, H. 338–356.
(1996) Polymer surface modification by 73. Ratzinger, G.,Fillafer, C.,Kerleta,V.,
plasmas and photons. Surf.Sci.Rep., 24 Wirth, M., and Gabor, F. (2010) The
(1–2), 3–54. role of surface functionalization in the
63. Denes, F.S. and Manolache, S. (2004) design of PLGA micro- and nanoparti-
Macromolecular plasma-chemistry: an cles. Crit. Rev. Ther. Drug Carrier Syst.,
emerging field of polymer science. Prog. 27 (1), 1–83.
Polym. Sci., 29 (8), 815–885. 74. Kalia, S., Kaith, B.S., and Kaur, I. (2009)
64. Fisher, E.R. (2004) A review of plasma- Pretreatments of natural fibers and their
surface interactions during processing of application as reinforcing material in
polymeric materials measured using the polymer composites-a review. Polym.
IRIS technique. Plasma Process. Polym.,
Eng. Sci., 49 (7), 1253–1272.
1 (1), 13–27. 75. Vasita, R., Shanmugam, K., and Katti,
65. Siow, K.S., Britcher, L., Kumar, S., and D.S. (2008) Improved biomaterials for
Griesser, H.J. (2006) Plasma methods
tissue engineering applications: surface
for the generation of chemically reactive modification of polymers. Curr. Top.
surfaces for biomolecule immobilization Med. Chem., 8 (4), 341–353.
and cell colonization – a review. Plasma
76. Shah, J.J., Geist, J., Locascio, L.E.,
Process. Polym., 3 (6–7), 392–418.
66. Ho,M.-H.,Hou,L.-T.,Tu, C.-Y., Hsieh, Gaitan, M., Rao, M.V., and Vreeland,
W.N. (2006) Surface modification of
H.-J., Lai, J.-Y., Chen, W.-J. et al. (2006)
poly(methyl methacrylate) for improved
Promotion of cell affinity of porous
PLLA scaffolds by immobilization of adsorption of wall coating polymers for
RGD peptides via plasma treatment. microchip electrophoresis. Electrophore-
Macromol. Biosci., 6 (1), 90–98. sis, 27 (19), 3788–3796.
67. Morent, R., De Geyter, N., Desmet, T., 77. Najafi, E., Kim, J.Y., Han, S.H., and Shin,
Dubruel, P., and Leys, C. (2011) Plasma K. (2006) UV-ozone treatment of multi-
surface modification of biodegradable walled carbon nanotubes for enhanced
polymers: a review. Plasma Process. organic solvent dispersion. Colloids
Polym., 8 (3), 171–190. Surf., A, 284, 373–378.