Page 210 - Biodegradable Polyesters
P. 210
188 7 Electrospun Scaffolds of Biodegradable Polyesters: Manufacturing and Biomedical Application
growth forvasculartissueengineer- 139. Khadka, D.B. and Haynie, D.T. (2012)
ing. J. Mater. Sci. Mater. Med., 23 (6), Protein- and peptide-based electrospun
1499–1510. nanofibers in medical biomaterials.
130. Yuan, W., Feng, Y., Wang, H., Yang, Nanomedicine, 8 (8), 1242–1262.
D.,An, B.,Zhang, W. et al. (2013) 140. Regis, S., Youssefian, S., Jassal, M.,
Hemocompatible surface of electrospun Phaneuf, M.D., Rahbar, N., and
nanofibrous scaffolds by ATRP modifi- Bhowmick, S. (2013) Fibronectin
cation. Mater. Sci. Eng.,C:Mater.Biol. adsorption on functionalized elec-
Appl., 33 (7), 3644–3651. trospun polycaprolactone scaffolds:
131. Kandasubramanian, B. and Govindaraj, experimental and molecular dynamics
P. (2014) Peeling model for cell adhesion studies. J. Biomed. Mater. Res. A, 102
on electrospun polymer nanofibres. J. (6), 1697–706.
Adhes. Sci. Technol., 28 (2), 171–185. 141. Vashist, S.K. (2012) Comparison of
132. Shin, S.H., Purevdorj, O., Castano, O., 1-Ethyl-3-(3-Dimethylaminopropyl) car-
Planell, J.A., and Kim, H.W. (2012) A bodiimide based strategies to crosslink
short review: recent advances in electro- antibodies on amine-functionalized
spinning for bone tissue regeneration. J. platforms for immunodiagnostic appli-
Tissue Eng., 3 (1), 2041731412443530. cations. Diagnostics, 2, 23–33.
133. Kai, D., Jin, G., Prabhakaran, M.P., and 142. Singh, S., Wu, B.M., and Dunn,
Ramakrishna, S. (2013) Electrospun
J.C. (2011) The enhancement of
synthetic and natural nanofibers for
VEGF-mediated angiogenesis by poly-
regenerative medicine and stem cells. caprolactone scaffolds with surface
Biotechnol. J., 8 (1), 59–72.
cross-linked heparin. Biomaterials, 32
134. Grafahrend, D., Heffels, K.H., Moller,
(8), 2059–2069.
M., Klee, D., and Groll, J. (2010) Elec-
143. Ye, L., Wu, X., Duan, H.Y., Geng, X.,
trospun, biofunctionalized fibers as
Chen, B., Gu, Y.Q. et al. (2012) The
tailored in vitro substrates for ker-
in vitro and in vivo biocompatibility
atinocyte cell culture. Macromol. Biosci.,
evaluation of heparin-poly(epsilon-
10 (9), 1022–1027.
caprolactone) conjugate for vascular
135. Xiang, P., Li, M., Zhang, C.Y., Chen,
D.L., and Zhou, Z.H. (2011) Cytocom- tissue engineering scaffolds. J. Biomed.
patibility of electrospun nano fiber Mater. Res. A, 100 (12), 3251–3258.
tubular scaffolds for small diameter 144. Liu, W., Thomopoulos, S., and Xia,
Y. (2012) Electrospun nanofibers for
tissue engineering blood vessels. Int. J.
regenerative medicine. Adv. Healthcare
Biol. Macromol., 49 (3), 281–288.
Mater., 1 (1), 10–25.
136. Boccafoschi, F., Fusaro, L., Mosca, C.,
Bosetti, M., Chevallier, P., Mantovani, 145. Prabhakaran, M.P., Venugopal, J.R., and
D. et al. (2012) The biological response Ramakrishna, S. (2009) Mesenchymal
of poly(L-lactide) films modified by dif- stem cell differentiation to neuronal
ferent biomolecules: role of the coating cells on electrospun nanofibrous sub-
strates for nerve tissue engineering.
strategy. J. Biomed. Mater. Res. A, 100
(9), 2373–2381. Biomaterials, 30 (28), 4996–5003.
137. Minuth, W.W., Strehl, R., and 146. Hajiali, H., Shahgasempour, S.,
Schumacher, K. (2005) Tissue Engi- Naimi-Jamal, M.R., and Peirovi, H.
neering, Essentials for Daily Laboratory (2011) Electrospun PGA/gelatin nanofi-
Work, Wiley-VCH Verlag GmbH, brous scaffolds and their potential
Weinheim. application in vascular tissue engineer-
138. Nune, M., Kumaraswamy, P., Krishnan, ing. Int. J. Nanomedicine, 6, 2133–2141.
U.M., and Sethuraman, S. (2013) 147. Lee, J.H., Rim, N.G., Jung, H.S., and
Self-assembling peptide nanofibrous Shin, H. (2010) Control of osteogenic
scaffolds for tissue engineering: novel differentiation and mineralization
approaches and strategies for effective of human mesenchymal stem cells
functional regeneration. Curr. Protein on composite nanofibers contain-
Pept. Sci., 14 (1), 70–84. ing poly[lactic-co-(glycolic acid)] and