Page 210 - Biodegradable Polyesters
P. 210

188  7 Electrospun Scaffolds of Biodegradable Polyesters: Manufacturing and Biomedical Application

                        growth forvasculartissueengineer-  139. Khadka, D.B. and Haynie, D.T. (2012)
                        ing. J. Mater. Sci. Mater. Med., 23 (6),  Protein- and peptide-based electrospun
                        1499–1510.                      nanofibers in medical biomaterials.
                    130. Yuan, W., Feng, Y., Wang, H., Yang,  Nanomedicine, 8 (8), 1242–1262.
                        D.,An, B.,Zhang, W. et al. (2013)  140. Regis, S., Youssefian, S., Jassal, M.,
                        Hemocompatible surface of electrospun  Phaneuf, M.D., Rahbar, N., and
                        nanofibrous scaffolds by ATRP modifi-  Bhowmick, S. (2013) Fibronectin
                        cation. Mater. Sci. Eng.,C:Mater.Biol.  adsorption on functionalized elec-
                        Appl., 33 (7), 3644–3651.       trospun polycaprolactone scaffolds:
                    131. Kandasubramanian, B. and Govindaraj,  experimental and molecular dynamics
                        P. (2014) Peeling model for cell adhesion  studies. J. Biomed. Mater. Res. A, 102
                        on electrospun polymer nanofibres. J.  (6), 1697–706.
                        Adhes. Sci. Technol., 28 (2), 171–185.  141. Vashist, S.K. (2012) Comparison of
                    132. Shin, S.H., Purevdorj, O., Castano, O.,  1-Ethyl-3-(3-Dimethylaminopropyl) car-
                        Planell, J.A., and Kim, H.W. (2012) A  bodiimide based strategies to crosslink
                        short review: recent advances in electro-  antibodies on amine-functionalized
                        spinning for bone tissue regeneration. J.  platforms for immunodiagnostic appli-
                        Tissue Eng., 3 (1), 2041731412443530.  cations. Diagnostics, 2, 23–33.
                    133. Kai, D., Jin, G., Prabhakaran, M.P., and  142. Singh, S., Wu, B.M., and Dunn,
                        Ramakrishna, S. (2013) Electrospun
                                                        J.C. (2011) The enhancement of
                        synthetic and natural nanofibers for
                                                        VEGF-mediated angiogenesis by poly-
                        regenerative medicine and stem cells.  caprolactone scaffolds with surface
                        Biotechnol. J., 8 (1), 59–72.
                                                        cross-linked heparin. Biomaterials, 32
                    134. Grafahrend, D., Heffels, K.H., Moller,
                                                        (8), 2059–2069.
                        M., Klee, D., and Groll, J. (2010) Elec-
                                                     143. Ye, L., Wu, X., Duan, H.Y., Geng, X.,
                        trospun, biofunctionalized fibers as
                                                        Chen, B., Gu, Y.Q. et al. (2012) The
                        tailored in vitro substrates for ker-
                                                        in vitro and in vivo biocompatibility
                        atinocyte cell culture. Macromol. Biosci.,
                                                        evaluation of heparin-poly(epsilon-
                        10 (9), 1022–1027.
                                                        caprolactone) conjugate for vascular
                    135. Xiang, P., Li, M., Zhang, C.Y., Chen,
                        D.L., and Zhou, Z.H. (2011) Cytocom-  tissue engineering scaffolds. J. Biomed.
                        patibility of electrospun nano fiber  Mater. Res. A, 100 (12), 3251–3258.
                        tubular scaffolds for small diameter  144. Liu, W., Thomopoulos, S., and Xia,
                                                        Y. (2012) Electrospun nanofibers for
                        tissue engineering blood vessels. Int. J.
                                                        regenerative medicine. Adv. Healthcare
                        Biol. Macromol., 49 (3), 281–288.
                                                        Mater., 1 (1), 10–25.
                    136. Boccafoschi, F., Fusaro, L., Mosca, C.,
                        Bosetti, M., Chevallier, P., Mantovani,  145. Prabhakaran, M.P., Venugopal, J.R., and
                        D. et al. (2012) The biological response  Ramakrishna, S. (2009) Mesenchymal
                        of poly(L-lactide) films modified by dif-  stem cell differentiation to neuronal
                        ferent biomolecules: role of the coating  cells on electrospun nanofibrous sub-
                                                        strates for nerve tissue engineering.
                        strategy. J. Biomed. Mater. Res. A, 100
                        (9), 2373–2381.                 Biomaterials, 30 (28), 4996–5003.
                    137. Minuth, W.W., Strehl, R., and  146. Hajiali, H., Shahgasempour, S.,
                        Schumacher, K. (2005) Tissue Engi-  Naimi-Jamal, M.R., and Peirovi, H.
                        neering, Essentials for Daily Laboratory  (2011) Electrospun PGA/gelatin nanofi-
                        Work, Wiley-VCH Verlag GmbH,    brous scaffolds and their potential
                        Weinheim.                       application in vascular tissue engineer-
                    138. Nune, M., Kumaraswamy, P., Krishnan,  ing. Int. J. Nanomedicine, 6, 2133–2141.
                        U.M., and Sethuraman, S. (2013)  147. Lee, J.H., Rim, N.G., Jung, H.S., and
                        Self-assembling peptide nanofibrous  Shin, H. (2010) Control of osteogenic
                        scaffolds for tissue engineering: novel  differentiation and mineralization
                        approaches and strategies for effective  of human mesenchymal stem cells
                        functional regeneration. Curr. Protein  on composite nanofibers contain-
                        Pept. Sci., 14 (1), 70–84.      ing poly[lactic-co-(glycolic acid)] and
   205   206   207   208   209   210   211   212   213   214   215