Page 205 - Biodegradable Polyesters
P. 205
References 183
41. Spadaccio, C., Rainer, A., De Porcellinis, 49. Wang, S., Mo, X.M., Jiang, B.J., Gao,
S.,Centola,M., De Marco, F.,Chello, C.J., Wang, H.S., Zhuang, Y.G. et al.
M. et al. (2010) A G-CSF functional- (2013) Fabrication of small-diameter
ized PLLA scaffold for wound repair: vascular scaffolds by heparin-bonded
an in vitro preliminary study. Conf. P(LLA-CL) composite nanofibers
Proc. IEEE Eng. Med. Biol. Soc., 2010, to improve graft patency. Int. J.
843–846. Nanomedicine, 8, 2131–2139.
42. Thorvaldsson, A., Stenhamre, H., 50. Zhu, Y.,Wang, A.,Patel,S., Kurpinski,
Gatenholm, P., and Walkenstrom, P. K., Diao, E., Bao, X. et al. (2011) Engi-
(2008) Electrospinning of highly porous neering bi-layer nanofibrous conduits
scaffolds for cartilage regeneration. for peripheral nerve regeneration. Tissue
Biomacromolecules, 9 (3), 1044–1049. Eng. PartCMethods, 17 (7), 705–715.
43. Paletta, J., Erffmeier, K., Theisen, C., 51. Kessler, F., Steffens, D., Lando, G.A.,
Hussain, D., Wendorff, J.H., Greiner, A. Pranke, P., and Weibel, D.E. (2013)
et al. (2009) Influence of poly-(L-lactic Wettability and cell spreading enhance-
acid) nanofiber functionalization on ment in poly(sulfone) and polyurethane
maximum load, Young’s modulus, and surfaces by UV-assisted treatment for
strain of nanofiber scaffolds before and tissue engineering proposals. Tissue Eng.
after cultivation of osteoblasts: an in Regener. Med., 11, 23–31.
vitro study. Sci. World J., 9, 1382–1393. 52. de Morais, M.G., Stillings, C., Dersch,
44. Zanatta, G., Steffens, D., Braghirolli, R.,Rudisile, M.,Pranke, P.,Costa,J.A.
D.I., Fernandes, R.A., Netto, C.A., and et al. (2010) Preparation of nanofibers
Pranke, P. (2012) Viability of mesenchy- containing the microalga Spirulina
mal stem cells during electrospinning. (Arthrospira). Bioresour. Technol., 101
Braz.J.Med.Biol. Res., 45 (2), 125–130. (8), 2872–2876.
45. Ko, E.K., Jeong, S.I., Rim, N.G., Lee, 53. Liu, X.H. and Ma, P.X. (2004) Polymeric
Y.M., Shin, H., and Lee, B.K. (2008) scaffolds for bone tissue engineering.
In vitro osteogenic differentiation of Ann. Biomed. Eng., 32 (3), 477–486.
human mesenchymal stem cells and 54. Schaubroeck, D., De Baets, J., Desmet,
in vivo bone formation in composite T., Dubruel, P., Schacht, E., Van Vaeck,
nanofiber meshes. Tissue Eng. Part A, L. et al. (2010) Surface modification
14 (12), 2105–2119. of an epoxy resin with polyamines via
46. Driscoll, T.P., Nakasone, R.H., Szczesny, cyanuric chloride coupling. Appl. Surf.
S.E., Elliott, D.M., and Mauck, R.L. Sci., 256 (21), 6269–6278.
(2013) Biaxial mechanics and inter- 55. Yaghoubi, H., Taghavinia, N., and
lamellar shearing of stem-cell seeded Alamdari, E.K. (2010) Self cleaning
electrospun angle-ply laminates for TiO2 coating on polycarbonate: surface
annulus fibrosus tissue engineering. J. treatment, photocatalytic and nanome-
Orthop. Res., 31 (6), 864–870. chanical properties. Surf. Coat. Technol.,
47. Zamani, F., Tehran, M.A., Latifi, M., 204 (9–10), 1562–1568.
Shokrgozar, M.A., and Zaminy, A. 56. Kong, J.S., Lee, D.J., and Kim, H.D.
(2013) Promotion of spinal cord axon (2001) Surface modification of low-
regeneration by 3D nanofibrous core- density polyethylene (LDPE) film and
sheath scaffolds. J. Biomed. Mater. improvement of adhesion between
Res. A, 102, 506–13. evaporated copper metal film and
48. Dargaville, B.L., Vaquette, C., Rasoul, F., LDPE. J. Appl. Polym. Sci., 82 (7),
Cooper-White, J.J., Campbell, J.H., and 1677–1690.
Whittaker, A.K. (2013) Electrospinning 57. Tao, G.L., Gong, A.J., Lu, J.J., Sue, H.J.,
and crosslinking of low-molecular- and Bergbreiter, D.E. (2001) Surface
weight poly(trimethylene carbonate-co- functionalized polypropylene: syn-
(L)-lactide) as an elastomeric scaffold thesis, characterization, and adhesion
for vascular engineering. Acta Biomater., properties. Macromolecules, 34 (22),
9 (6), 6885–6897. 7672–7679.