Page 358 - Biodegradable Polyesters
P. 358
336 13 Biodegradable Polyester-Based Blends and Composites
derived from seashell wastes. Mater. 16. Kalia, S., Kaith, B., and Kaur, I. (2011)
Des., 57, 168–174. Cellulose Fibers: Bio-and Nano-Polymer
5. Ojijo, V. and Ray, S.S. (2014) Nano- Composites,Springer.
biocomposites based on synthetic 17. Lee, K.-Y., Delille, A., and Bismarck,
aliphatic polyesters and nanoclay. Prog. A. (2011) Cellulose Fibers: Bio-and
Mater Sci., 62, 1–57. Nano-Polymer Composites, Springer, pp.
6. Han, K.S. (1983) Compressive fatigue 155–178.
behaviour of a glass fibre-reinforced 18. Faruk, O., Bledzki, A.K., Fink, H.-P., and
polyester composite at 300 K and 77 K. Sain, M. (2012) Biocomposites rein-
Composites, 14 (2), 145–150. forced with natural fibers: 2000–2010.
7. Higashi, S., Yamamuro, T., Nakamura, Prog. Polym. Sci., 37 (11), 1552–1596.
T., Ikada, Y., Hyon, S.H., and Jamshidi, 19. Wang, Y., Li, V.C., and Backer, S. (1990)
K. (1986) Polymer-hydroxyapatite com- Tensile properties of synthetic fiber
posites for biodegradable bone fillers. reinforced mortar. Cem. Concr. Compos.,
Biomaterials, 7 (3), 183–187. 12 (1), 29–40.
8. Mishra, S., Mohanty, A.K., Drzal, L.T., 20. Ahmad, Z., Sarwar, M., Krug, H., and
Misra, M., Parija, S., Nayak, S.K., Schmidt, H. (1997) Preparation and
and Tripathy, S.S. (2003) Studies on properties of composites of kevlar-
mechanical performance of biofi- nomex copolymer and boehmite. Angew.
bre/glass reinforced polyester hybrid
Makromol. Chem., 248 (1), 139–151.
composites. Compos. Sci. Technol., 63
21. Kwolek, S. and Yang, H. (1993)
(10), 1377–1385. Manmade Fibers: Their Origin and
9. Kadla, J., Kubo, S., Venditti, R., Gilbert, Development, Elsevier Applied Science
R., Compere, A., and Griffith, W. (2002)
Publishers Ltd., Barking, pp. 315–336.
Lignin-based carbon fibers for compos-
22. Foo, C.C., Chai, G.B., and Seah, L.K.
ite fiber applications. Carbon, 40 (15),
(2007) Mechanical properties of Nomex
2913–2920.
material and Nomex honeycomb struc-
10. Kanie, T.,Fujii, K.,Arikawa,H., and
ture. Compos. Struct., 80 (4), 588–594.
Inoue, K. (2000) Flexural properties and
23. Su, F.-H., Zhang, Z.-Z., Guo, F., Wang,
impact strength of denture base poly-
mer reinforced with woven glass fibers. K., and Liu, W.-M. (2006) Effects of
Dent. Mater., 16 (2), 150–158. solid lubricants on friction and wear
11. Cantwell, W. and Morton, J. (1991) properties of Nomex fabric composites.
Mater. Sci. Eng., A, 424 (1), 333–339.
The impact resistance of composite
24. Andrews, M.C.,Lu, D.,and Young,
materials—a review. Composites, 22 (5),
R.J. (1997) Compressive properties
347–362.
12. Hull, D. and Clyne, T. (1996) An of aramid fibres. Polymer, 38 (10),
Introduction to Composite Materials, 2379–2388.
Cambridge University Press. 25. Greenwood, J. and Rose, P. (1974) Com-
13. Wang, B., Xiong, J., Wang, X., Ma, L., pressive behaviour of Kevlar 49 fibres
Zhang, G.-Q., Wu, L.-Z., and Feng, J.-C. and composites. J. Mater. Sci., 9 (11),
(2013) Energy absorption efficiency of 1809–1814.
carbon fiber reinforced polymer lami- 26. Ganczakowski, H.L., Ashby, M.F.,
nates under high velocity impact. Mater. Beaumont, P.W.R., and Smith, P.A.
Des., 50, 140–148. (1990) The behaviour of Kevlar fibre-
14. Thostenson, E.T., Ren, Z., and Chou, epoxy laminates under static and fatigue
T.-W. (2001) Advances in the science loading—Part 2: modelling. Compos. Sci.
and technology of carbon nanotubes Technol., 37 (4), 371–392.
and their composites: a review. Compos. 27. Gay, D., Hoa, S.V., and Tsai, S.W. (2002)
Sci. Technol., 61 (13), 1899–1912. Composite Materials: Design and Appli-
15. Holbery, J. and Houston, D. (2006) cations,CRC Press.
Natural-fiber-reinforced polymer com- 28. Reis, P.N.B., Ferreira, J.A.M., Santos,
posites in automotive applications. JOM, P., Richardson, M.O.W., and Santos,
58 (11), 80–86. J.B. (2012) Impact response of Kevlar