Page 358 - Biodegradable Polyesters
P. 358

336  13  Biodegradable Polyester-Based Blends and Composites

                        derived from seashell wastes. Mater.  16. Kalia, S., Kaith, B., and Kaur, I. (2011)
                        Des., 57, 168–174.              Cellulose Fibers: Bio-and Nano-Polymer
                      5. Ojijo, V. and Ray, S.S. (2014) Nano-  Composites,Springer.
                        biocomposites based on synthetic  17. Lee, K.-Y., Delille, A., and Bismarck,
                        aliphatic polyesters and nanoclay. Prog.  A. (2011) Cellulose Fibers: Bio-and
                        Mater Sci., 62, 1–57.           Nano-Polymer Composites, Springer, pp.
                      6. Han, K.S. (1983) Compressive fatigue  155–178.
                        behaviour of a glass fibre-reinforced  18. Faruk, O., Bledzki, A.K., Fink, H.-P., and
                        polyester composite at 300 K and 77 K.  Sain, M. (2012) Biocomposites rein-
                        Composites, 14 (2), 145–150.    forced with natural fibers: 2000–2010.
                      7. Higashi, S., Yamamuro, T., Nakamura,  Prog. Polym. Sci., 37 (11), 1552–1596.
                        T., Ikada, Y., Hyon, S.H., and Jamshidi,  19. Wang, Y., Li, V.C., and Backer, S. (1990)
                        K. (1986) Polymer-hydroxyapatite com-  Tensile properties of synthetic fiber
                        posites for biodegradable bone fillers.  reinforced mortar. Cem. Concr. Compos.,
                        Biomaterials, 7 (3), 183–187.   12 (1), 29–40.
                      8. Mishra, S., Mohanty, A.K., Drzal, L.T.,  20. Ahmad, Z., Sarwar, M., Krug, H., and
                        Misra, M., Parija, S., Nayak, S.K.,  Schmidt, H. (1997) Preparation and
                        and Tripathy, S.S. (2003) Studies on  properties of composites of kevlar-
                        mechanical performance of biofi-  nomex copolymer and boehmite. Angew.
                        bre/glass reinforced polyester hybrid
                                                        Makromol. Chem., 248 (1), 139–151.
                        composites. Compos. Sci. Technol., 63
                                                     21. Kwolek, S. and Yang, H. (1993)
                        (10), 1377–1385.                Manmade Fibers: Their Origin and
                      9. Kadla, J., Kubo, S., Venditti, R., Gilbert,  Development, Elsevier Applied Science
                        R., Compere, A., and Griffith, W. (2002)
                                                        Publishers Ltd., Barking, pp. 315–336.
                        Lignin-based carbon fibers for compos-
                                                     22. Foo, C.C., Chai, G.B., and Seah, L.K.
                        ite fiber applications. Carbon, 40 (15),
                                                        (2007) Mechanical properties of Nomex
                        2913–2920.
                                                        material and Nomex honeycomb struc-
                     10. Kanie, T.,Fujii, K.,Arikawa,H., and
                                                        ture. Compos. Struct., 80 (4), 588–594.
                        Inoue, K. (2000) Flexural properties and
                                                     23. Su, F.-H., Zhang, Z.-Z., Guo, F., Wang,
                        impact strength of denture base poly-
                        mer reinforced with woven glass fibers.  K., and Liu, W.-M. (2006) Effects of
                        Dent. Mater., 16 (2), 150–158.  solid lubricants on friction and wear
                     11. Cantwell, W. and Morton, J. (1991)  properties of Nomex fabric composites.
                                                        Mater. Sci. Eng., A, 424 (1), 333–339.
                        The impact resistance of composite
                                                     24. Andrews, M.C.,Lu, D.,and Young,
                        materials—a review. Composites, 22 (5),
                                                        R.J. (1997) Compressive properties
                        347–362.
                     12. Hull, D. and Clyne, T. (1996) An  of aramid fibres. Polymer, 38 (10),
                        Introduction to Composite Materials,  2379–2388.
                        Cambridge University Press.  25. Greenwood, J. and Rose, P. (1974) Com-
                     13. Wang, B., Xiong, J., Wang, X., Ma, L.,  pressive behaviour of Kevlar 49 fibres
                        Zhang, G.-Q., Wu, L.-Z., and Feng, J.-C.  and composites. J. Mater. Sci., 9 (11),
                        (2013) Energy absorption efficiency of  1809–1814.
                        carbon fiber reinforced polymer lami-  26. Ganczakowski, H.L., Ashby, M.F.,
                        nates under high velocity impact. Mater.  Beaumont, P.W.R., and Smith, P.A.
                        Des., 50, 140–148.              (1990) The behaviour of Kevlar fibre-
                     14. Thostenson, E.T., Ren, Z., and Chou,  epoxy laminates under static and fatigue
                        T.-W. (2001) Advances in the science  loading—Part 2: modelling. Compos. Sci.
                        and technology of carbon nanotubes  Technol., 37 (4), 371–392.
                        and their composites: a review. Compos.  27. Gay, D., Hoa, S.V., and Tsai, S.W. (2002)
                        Sci. Technol., 61 (13), 1899–1912.  Composite Materials: Design and Appli-
                     15. Holbery, J. and Houston, D. (2006)  cations,CRC Press.
                        Natural-fiber-reinforced polymer com-  28. Reis, P.N.B., Ferreira, J.A.M., Santos,
                        posites in automotive applications. JOM,  P., Richardson, M.O.W., and Santos,
                        58 (11), 80–86.                 J.B. (2012) Impact response of Kevlar
   353   354   355   356   357   358   359   360   361   362   363