Page 362 - Biodegradable Polyesters
P. 362

340  13  Biodegradable Polyester-Based Blends and Composites

                        (2014) in Regenerative Medicine Appli-  of polylactic acid polymers. Polym.
                        cations in Organ Transplantation (eds  Degrad. Stab., 59 (1), 145–152.
                        G. Orlando et al.), Academic Press,  95. Ramzy, A., Beermann, D., Steuernagel,
                        Boston, MA, pp. 81–99.          L., Meiners, D., and Ziegmann, G.
                     90. Kikuchi, M., Koyama, Y., Yamada, T.,  (2014) Developing a new generation of
                        Imamura, Y., Okada, T., Shirahama, N.,  sisal composite fibres for use in indus-
                        Akita, K., Takakuda, K., and Tanaka,  trial applications. Composites Part B, 66,
                        J. (2004) Development of guided bone  287–298.
                        regeneration membrane composed of  96. Akil, H.M., Santulli, C., Sarasini, F.,
                        β-tricalcium phosphate and poly (l-  Tirillò, J., and Valente, T. (2014) Envi-
                        lactide-co-glycolide-co-ε-caprolactone)  ronmental effects on the mechanical
                        composites. Biomaterials, 25 (28),  behaviour of pultruded jute/glass fibre-
                        5979–5986.                      reinforced polyester hybrid composites.
                     91. Place, E.S., George, J.H., Williams, C.K.,  Compos. Sci. Technol., 94, 62–70.
                        and Stevens, M.M. (2009) Synthetic  97. Mulinari, D.R., Baptista, C.A.R.P., Souza,
                        polymer scaffolds for tissue engineering.  J.V.C., and Voorwald, H.J.C. (2011)
                        Chem. Soc. Rev., 38 (4), 1139–1151.  Mechanical properties of coconut
                     92. Hutmacher, D.W. (2000) Scaffolds in tis-  fibers reinforced polyester composites.
                        sue engineering bone and cartilage. Bio-  Procedia Eng., 10, 2074–2079.
                        materials, 21 (24), 2529–2543.  98. Hartmann, M. (1998) Biopolymers from
                     93. Knowles, J.C., Hastings, G.W., Ohta, H.,  Renewable Resources, Springer, pp.
                        Niwa, S., and Boeree, N. (1992) Devel-  367–411.
                        opment of a degradable composite for  99. Smith, R. (2005) Biodegradable Poly-
                        orthopaedic use: in vivo biomechani-  mers for Industrial Applications,CRC
                        cal and histological evaluation of two  Press.
                        bioactive degradable composites based  100. Vert, M. (2005) Aliphatic polyesters:
                        on the polyhydroxybutyrate polymer.  great degradable polymers that cannot
                        Biomaterials, 13 (8), 491–496.  do everything. Biomacromolecules, 6 (2),
                     94. Lunt, J. (1998) Large-scale production,  538–546.
                        properties and commercial applications
   357   358   359   360   361   362   363   364   365   366   367