Page 360 - Biodegradable Polyesters
P. 360
338 13 Biodegradable Polyester-Based Blends and Composites
49. Liu, L., Yu, J., Cheng, L., and Yang, X. Paskocimas, C.A. (2012) A biodegrad-
(2009) Biodegradability of poly(butylene able composite material based on
succinate) (PBS) composite reinforced polyhydroxybutyrate (PHB) and car-
with jute fibre. Polym. Degrad. Stab., 94 nauba fibers. Composites Part B, 43 (7),
(1), 90–94. 2827–2835.
50. Memon, A. and Nakai, A. (2013) 60. Sathishkumar, T.P., Navaneethakrishnan,
Mechanical properties of jute spun P., and Shankar, S. (2012) Tensile and
yarn/PLA tubular braided composite by flexural properties of snake grass natural
pultrusion molding. Energy Procedia, fiber reinforced isophthallic polyester
34, 818–829. composites. Compos. Sci. Technol., 72
51. Barkoula, N.M., Garkhail, S.K., and (10), 1183–1190.
Peijs, T. (2010) Biodegradable compos- 61. Bajpai, P.K., Singh, I., and Madaan, J.
ites based on flax/polyhydroxybutyrate (2013) Tribological behavior of natural
and its copolymer with hydroxyvalerate. fiber reinforced PLA composites. Wear,
Ind. Crops Prod., 31 (1), 34–42. 297 (1–2), 829–840.
52. Baghaei, B., Skrifvars, M., and Berglin, 62. Bledzki, A.K., Jaszkiewicz, A., and
L. (2013) Manufacture and characterisa- Scherzer, D. (2009) Mechanical proper-
tion of thermoplastic composites made ties of PLA composites with man-made
from PLA/hemp co-wrapped hybrid cellulose and abaca fibres. Composites
Part A, 40 (4), 404–412.
yarn prepregs. Composites Part A, 50,
63. Nuthong, W., Uawongsuwan, P.,
93–101.
Pivsa-Art, W., and Hamada, H. (2013)
53. Kowalczyk, M., Piorkowska, E.,
Kulpinski, P., and Pracella, M. (2011) Impact property of flexible epoxy
treated natural fiber reinforced PLA
Mechanical and thermal properties
composites. Energy Procedia, 34,
of PLA composites with cellulose
839–847.
nanofibers and standard size fibers.
64. Porras, A. and Maranon, A. (2012)
Composites Part A, 42 (10), 1509–1514.
Development and characterization of
54. Christian, S.J. and Billington, S.L. (2011)
a laminate composite material from
Mechanical response of PHB- and cel-
polylactic acid (PLA) and woven bam-
lulose acetate natural fiber-reinforced boo fabric. Composites Part B, 43 (7),
composites for construction appli- 2782–2788.
cations. Composites Part B, 42 (7),
65. Cheng, S., Lau, K.-t., Liu, T., Zhao, Y.,
1920–1928.
Lam, P.-M., and Yin, Y. (2009) Mechan-
55. Graupner, N., Herrmann, A.S., and
ical and thermal properties of chicken
Müssig, J. (2009) Natural and man-made
feather fiber/PLA green composites.
cellulose fibre-reinforced poly(lactic Composites Part B, 40 (7), 650–654.
acid) (PLA) composites: an overview 66. Zadorecki, P. and Flodin, P. (1986) Prop-
about mechanical characteristics and erties of cellulose-polyester composites.
application areas. Composites Part A, 40 Polym. Compos., 7 (3), 170–175.
(6–7), 810–821. 67. La Cara, F., Immirzi, B., Ionata, E.,
56. Ochi, S. (2008) Mechanical properties of Mazzella, A., Portofino, S., Orsello, G.,
kenaf fibers and kenaf/PLA composites. and De Prisco, P.P. (2003) Biodegra-
Mech. Mater., 40 (4–5), 446–452. dation of poly-ε-caprolactone/poly-β-
57. Ramesh, M., Palanikumar, K., and hydroxybutyrate blend. Polym. Degrad.
Reddy, K.H. (2013) Mechanical property Stab., 79 (1), 37–43.
evaluation of sisal–jute–glass fiber rein- 68. Arrieta, M.P., López, J., Hernández,
forced polyester composites. Composites A., and Rayón, E. (2014) Ternary
Part B, 48,1–9. PLA–PHB–Limonene blends intended
58. Saheb, D.N. and Jog, J. (1999) Natural for biodegradable food packaging appli-
fiber polymer composites: a review. Adv. cations. Eur. Polym. J., 50, 255–270.
Polym. Tech., 18 (4), 351–363. 69. Yilmaz,S., Kodal, M.,Yilmaz, T.,and
59. Melo, J.D.D., Carvalho, L.F.M., Ozkoc, G. (2014) Fracture toughness
Medeiros, A.M., Souto, C.R.O., and analysis of O-POSS/PLA composites