Page 360 - Biodegradable Polyesters
P. 360

338  13  Biodegradable Polyester-Based Blends and Composites

                     49. Liu, L., Yu, J., Cheng, L., and Yang, X.  Paskocimas, C.A. (2012) A biodegrad-
                        (2009) Biodegradability of poly(butylene  able composite material based on
                        succinate) (PBS) composite reinforced  polyhydroxybutyrate (PHB) and car-
                        with jute fibre. Polym. Degrad. Stab., 94  nauba fibers. Composites Part B, 43 (7),
                        (1), 90–94.                     2827–2835.
                     50. Memon, A. and Nakai, A. (2013)  60. Sathishkumar, T.P., Navaneethakrishnan,
                        Mechanical properties of jute spun  P., and Shankar, S. (2012) Tensile and
                        yarn/PLA tubular braided composite by  flexural properties of snake grass natural
                        pultrusion molding. Energy Procedia,  fiber reinforced isophthallic polyester
                        34, 818–829.                    composites. Compos. Sci. Technol., 72
                     51. Barkoula, N.M., Garkhail, S.K., and  (10), 1183–1190.
                        Peijs, T. (2010) Biodegradable compos-  61. Bajpai, P.K., Singh, I., and Madaan, J.
                        ites based on flax/polyhydroxybutyrate  (2013) Tribological behavior of natural
                        and its copolymer with hydroxyvalerate.  fiber reinforced PLA composites. Wear,
                        Ind. Crops Prod., 31 (1), 34–42.  297 (1–2), 829–840.
                     52. Baghaei, B., Skrifvars, M., and Berglin,  62. Bledzki, A.K., Jaszkiewicz, A., and
                        L. (2013) Manufacture and characterisa-  Scherzer, D. (2009) Mechanical proper-
                        tion of thermoplastic composites made  ties of PLA composites with man-made
                        from PLA/hemp co-wrapped hybrid  cellulose and abaca fibres. Composites
                                                        Part A, 40 (4), 404–412.
                        yarn prepregs. Composites Part A, 50,
                                                     63. Nuthong, W., Uawongsuwan, P.,
                        93–101.
                                                        Pivsa-Art, W., and Hamada, H. (2013)
                     53. Kowalczyk, M., Piorkowska, E.,
                        Kulpinski, P., and Pracella, M. (2011)  Impact property of flexible epoxy
                                                        treated natural fiber reinforced PLA
                        Mechanical and thermal properties
                                                        composites. Energy Procedia, 34,
                        of PLA composites with cellulose
                                                        839–847.
                        nanofibers and standard size fibers.
                                                     64. Porras, A. and Maranon, A. (2012)
                        Composites Part A, 42 (10), 1509–1514.
                                                        Development and characterization of
                     54. Christian, S.J. and Billington, S.L. (2011)
                                                        a laminate composite material from
                        Mechanical response of PHB- and cel-
                                                        polylactic acid (PLA) and woven bam-
                        lulose acetate natural fiber-reinforced  boo fabric. Composites Part B, 43 (7),
                        composites for construction appli-  2782–2788.
                        cations. Composites Part B, 42 (7),
                                                     65. Cheng, S., Lau, K.-t., Liu, T., Zhao, Y.,
                        1920–1928.
                                                        Lam, P.-M., and Yin, Y. (2009) Mechan-
                     55. Graupner, N., Herrmann, A.S., and
                                                        ical and thermal properties of chicken
                        Müssig, J. (2009) Natural and man-made
                                                        feather fiber/PLA green composites.
                        cellulose fibre-reinforced poly(lactic  Composites Part B, 40 (7), 650–654.
                        acid) (PLA) composites: an overview  66. Zadorecki, P. and Flodin, P. (1986) Prop-
                        about mechanical characteristics and  erties of cellulose-polyester composites.
                        application areas. Composites Part A, 40  Polym. Compos., 7 (3), 170–175.
                        (6–7), 810–821.              67. La Cara, F., Immirzi, B., Ionata, E.,
                     56. Ochi, S. (2008) Mechanical properties of  Mazzella, A., Portofino, S., Orsello, G.,
                        kenaf fibers and kenaf/PLA composites.  and De Prisco, P.P. (2003) Biodegra-
                        Mech. Mater., 40 (4–5), 446–452.  dation of poly-ε-caprolactone/poly-β-
                     57. Ramesh, M., Palanikumar, K., and  hydroxybutyrate blend. Polym. Degrad.
                        Reddy, K.H. (2013) Mechanical property  Stab., 79 (1), 37–43.
                        evaluation of sisal–jute–glass fiber rein-  68. Arrieta, M.P., López, J., Hernández,
                        forced polyester composites. Composites  A., and Rayón, E. (2014) Ternary
                        Part B, 48,1–9.                 PLA–PHB–Limonene blends intended
                     58. Saheb, D.N. and Jog, J. (1999) Natural  for biodegradable food packaging appli-
                        fiber polymer composites: a review. Adv.  cations. Eur. Polym. J., 50, 255–270.
                        Polym. Tech., 18 (4), 351–363.  69. Yilmaz,S., Kodal, M.,Yilmaz, T.,and
                     59. Melo, J.D.D., Carvalho, L.F.M.,  Ozkoc, G. (2014) Fracture toughness
                        Medeiros, A.M., Souto, C.R.O., and  analysis of O-POSS/PLA composites
   355   356   357   358   359   360   361   362   363   364   365