Page 361 - Biodegradable Polyesters
P. 361
References 339
assessed by essential work of frac- composite scaffolds for bone tissue
ture method. Composites Part B, 56, engineering. Biomaterials, 27 (18),
527–535. 3413–3431.
70. Jia, W., Gong, R.H., and Hogg, P.J. 80. Moran, J.M., Pazzano, D., and Bonassar,
(2014) Poly (lactic acid) fibre reinforced L.J. (2003) Characterization of polylactic
biodegradable composites. Composites acid-polyglycolic acid composites for
Part B, 62, 104–112. cartilagetissueengineering. Tissue Eng.,
71. Xu, C., Yuan, D., Fu, L., and Chen, Y. 9 (1), 63–70.
(2014) Physical blend of PLA/NR with 81. Middleton, J.C. and Tipton, A.J. (2000)
co-continuous phase structure: prepa- Synthetic biodegradable polymers as
ration, rheology property, mechanical orthopedic devices. Biomaterials, 21
properties and morphology. Polym. (23), 2335–2346.
Test., 37, 94–101. 82. Peltoniemi, H., Ashammakhi, N.,
72. Bartczak, Z., Galeski, A., Kowalczuk, Kontio,R., Waris, T.,Salo, A.,Lindqvist,
M., Sobota, M., and Malinowski, R. C., Grätz, K., and Suuronen, R. (2002)
(2013) Tough blends of poly(lactide) The use of bioabsorbable osteofixation
and amorphous poly([R,S]-3-hydroxy devices in craniomaxillofacial surgery.
butyrate) – morphology and properties. Oral Surg., Oral Med., Oral Pathol.,
Eur. Polym. J., 49 (11), 3630–3641. Oral Radiol., Endod., 94 (1), 5–14.
73. Chen,C.-C.,Chueh,J.-Y.,Tseng,H., 83. L.D.Kimble, D.Bhattacharyya, S.Fakirov,
Huang, H.-M., and Lee, S.-Y. (2003) Biodegradable microfibrillar polymer-
Preparation and characterization of polymer composites from Poly(L-lactic
biodegradable PLA polymeric blends. acid)/poly(glycolic acid). Expr. Polym.
Biomaterials, 24 (7), 1167–1173. Lett. (in press).
74. Imre, B., Bed˝ o, D., Domján, A., Schön, 84. Hwang, S.Y., Yoo, E.S., and Im, S.S.
P., Vancso, G.J., and Pukánszky, B. (2011) Effects of TS-1 zeolite structures
(2013) Structure, properties and on physical properties and enzymatic
interfacial interactions in poly(lactic degradation of Poly (butylene succinate)
acid)/polyurethane blends prepared by (PBS)/TS-1 zeolite hybrid composites.
reactive processing. Eur.Polym.J., 49 Polymer, 52 (4), 965–975.
(10), 3104–3113. 85. Byun, Y. and Kim, Y.T. (2014) in Inno-
75. Chen, L.J. and Wang, M. (2002) Produc- vations in Food Packaging, 2nd edn (ed
tion and evaluation of biodegradable J.H. Han), Academic Press, San Diego,
composites based on PHB–PHV CA, pp. 369–390.
copolymer. Biomaterials, 23 (13), 86. Mizuno, H., Roy, A.K., Vacanti, C.A.,
2631–2639. Kojima, K., Ueda, M., and Bonassar, L.J.
76. Murase, S.K. and Puiggalí, J. (2014) in (2004) Tissue-engineered composites of
Natural and Synthetic Biomedical Poly- anulus fibrosus and nucleus pulposus
mers (eds S.G. Kumbar, C.T. Laurencin, for intervertebral disc replacement.
and M. Deng), Elsevier, Oxford, pp. Spine, 29 (12), 1290–1297.
145–166. 87. Törmälä, P., Vasenius, J., Vainionpää, S.,
77. Ikada, Y. and Tsuji, H. (2000) Laiho, J., Pohjonen, T., and Rokkanen,
Biodegradable polyesters for medical P. (1991) Ultra-high-strength absorbable
and ecological applications. Macromol. self-reinforced polyglycolide (SR-PGA)
Rapid Commun., 21 (3), 117–132. composite rods for internal fixation
78. Ramakrishna, S., Mayer, J., of bone fractures: in vitro and in vivo
Wintermantel, E., and Leong, K.W. study. J. Biomed. Mater. Res., 25 (1),
(2001) Biomedical applications of 1–22.
polymer-composite materials: a 88. Södergård, A. and Stolt, M. (2002)
review. Compos.Sci.Technol., 61 (9), Properties of lactic acid based polymers
1189–1224. and their correlation with composition.
79. Rezwan, K., Chen, Q.Z., Blaker, J.J., and Prog. Polym. Sci., 27 (6), 1123–1163.
Boccaccini, A.R. (2006) Biodegradable 89. Samavedi, S., Poindexter, L.K.,
and bioactive porous polymer/inorganic Van Dyke, M., and Goldstein, A.S.