Page 359 - Biodegradable Polyesters
P. 359
References 337
composites with filled epoxy matrix. ligament replacement with a partially
Compos. Struct., 94 (12), 3520–3528. absorbable tissue scaffold. Am. J. Sports
29. Tanner, D., Fitzgerald, J.A., and Phillips, Med., 11 (4), 228–233.
B.R. (1989) The Keviar story—an 40. Georgiou, G., Mathieu, L., Pioletti, D.P.,
advanced materials case study. Adv. Bourban, P.E., Månson, J.A.E., Knowles,
Mater., 1 (5), 151–156. J.C., and Nazhat, S.N. (2007) Polylactic
30. Avérous, L. (2013) in Handbook of acid–phosphate glass composite foams
Biopolymers and Biodegradable Plastics as scaffolds for bone tissue engineering.
(ed S. Ebnesajjad), William Andrew J. Biomed. Mater. Res. Part B: Appl.
Publishing, Boston, MA, pp. 171–188. Biomater., 80B (2), 322–331.
31. Patrício, T. and Bártolo, P. (2013) 41. Parsons, A.J., Ahmed, I., Haque, P.,
Thermal stability of PCL/PLA blends Fitzpatrick, B., Niazi, M.I.K., Walker,
produced by physical blending process. G.S., and Rudd, C.D. (2009) Phosphate
Procedia Eng., 59, 292–297. glass fibre composites for bone repair. J.
32. Pivsa-Art, W., Pavasupree, S., Bionic Eng., 6 (4), 318–323.
O-Charoen, N., Insuan, U., Jailak, 42. Kim, H.-W., Lee, E.-J., Jun, I.-K., Kim,
P., and Pivsa-Art, S. (2011) Prepa- H.-E., and Knowles, J.C. (2005) Degra-
ration of polymer blends between dation and drug release of phosphate
poly (L-lactic acid), poly (butylene glass/polycaprolactone biological com-
succinate-co-adipate) and poly (butylene
posites for hard-tissue regeneration.
adipate-co-terephthalate) for blow film
J. Biomed. Mater. Res. Part B: Appl.
industrial application. Energy Procedia, Biomater., 75B (1), 34–41.
9, 581–588. 43. Al-Oqla, F.M. and Sapuan, S.M. (2014)
33. Lin, S.,Guo,W., Chen,C., Ma,J., and
Natural fiber reinforced polymer com-
Wang, B. (2012) Mechanical proper-
posites in industrial applications:
ties and morphology of biodegradable
feasibility of date palm fibers for sus-
poly(lactic acid)/poly(butylene adipate-
tainable automotive industry. J. Cleaner
co-terephthalate) blends compatibilized
Prod., 66, 347–354.
by transesterification. Mater. Des., 36,
44. Oksman, K., Skrifvars, M., and Selin,
604–608.
34. Immanuel, V. and Meenakshi, K.S. J.F. (2003) Natural fibres as rein-
(2011) Synthesis of carbon cloth by forcement in polylactic acid (PLA)
composites. Compos.Sci.Technol., 63
controlled pyrolysis of rayon cloth for
(9), 1317–1324.
aerospace and advanced engineering
45. Tran, T.P.T., Bénézet, J.-C., and Bergeret,
applications. Indian J. Sci. Technol., 4
A. (2014) Rice and Einkorn wheat husks
(7), 759–762.
35. Loud, S.N. (1998) Handbook of Compos- reinforced poly(lactic acid) (PLA) bio-
ites, Springer, pp. 931–956. composites: effects of alkaline and silane
36. Shen, L., Yang, H., Ying, J., Qiao, F., surface treatments of husks. Ind. Crops
and Peng, M. (2009) Preparation and Prod., 58, 111–124.
mechanical properties of carbon fiber 46. Ndazi, B., Karlsson, S., Tesha, J., and
reinforced hydroxyapatite/polylactide Nyahumwa, C. (2007) Chemical and
biocomposites. J. Mater. Sci. - Mater. physical modifications of rice husks for
Med., 20 (11), 2259–2265. use as composite panels. Composites
37. Masuelli, M.A. (2013) Introduction of Part A, 38 (3), 925–935.
Fiber-Reinforced Polymers – Polymers 47. Dash,B., Rana,A., Mishra,H., Nayak,
and Composites: Concepts, Properties S., Mishra, S., and Tripathy, S. (1999)
and Processes. In tech, pp. 3–40. Novel, low-cost jute-polyester com-
38. Raquez,J.-M.,Habibi, Y.,Murariu,M., posites. Part 1: processing, mechanical
and Dubois, P. (2013) Polylactide (PLA)- properties, and SEM analysis. Polym.
based nanocomposites. Prog. Polym. Compos., 20 (1), 62–71.
Sci., 38 (10–11), 1504–1542. 48. Roe, P. and Ansell, M.P. (1985) Jute-
39. Aragona, J., Parsons, J.R., Alexander, H., reinforced polyester composites. J.
and Weiss, A.B. (1983) Medial collateral Mater. Sci., 20 (11), 4015–4020.