Page 359 - Biodegradable Polyesters
P. 359

References  337

                  composites with filled epoxy matrix.  ligament replacement with a partially
                  Compos. Struct., 94 (12), 3520–3528.  absorbable tissue scaffold. Am. J. Sports
               29. Tanner, D., Fitzgerald, J.A., and Phillips,  Med., 11 (4), 228–233.
                  B.R. (1989) The Keviar story—an  40. Georgiou, G., Mathieu, L., Pioletti, D.P.,
                  advanced materials case study. Adv.  Bourban, P.E., Månson, J.A.E., Knowles,
                  Mater., 1 (5), 151–156.         J.C., and Nazhat, S.N. (2007) Polylactic
               30. Avérous, L. (2013) in Handbook of  acid–phosphate glass composite foams
                  Biopolymers and Biodegradable Plastics  as scaffolds for bone tissue engineering.
                  (ed S. Ebnesajjad), William Andrew  J. Biomed. Mater. Res. Part B: Appl.
                  Publishing, Boston, MA, pp. 171–188.  Biomater., 80B (2), 322–331.
               31. Patrício, T. and Bártolo, P. (2013)  41. Parsons, A.J., Ahmed, I., Haque, P.,
                  Thermal stability of PCL/PLA blends  Fitzpatrick, B., Niazi, M.I.K., Walker,
                  produced by physical blending process.  G.S., and Rudd, C.D. (2009) Phosphate
                  Procedia Eng., 59, 292–297.     glass fibre composites for bone repair. J.
               32. Pivsa-Art, W., Pavasupree, S.,  Bionic Eng., 6 (4), 318–323.
                  O-Charoen, N., Insuan, U., Jailak,  42. Kim, H.-W., Lee, E.-J., Jun, I.-K., Kim,
                  P., and Pivsa-Art, S. (2011) Prepa-  H.-E., and Knowles, J.C. (2005) Degra-
                  ration of polymer blends between  dation and drug release of phosphate
                  poly (L-lactic acid), poly (butylene  glass/polycaprolactone biological com-
                  succinate-co-adipate) and poly (butylene
                                                  posites for hard-tissue regeneration.
                  adipate-co-terephthalate) for blow film
                                                  J. Biomed. Mater. Res. Part B: Appl.
                  industrial application. Energy Procedia,  Biomater., 75B (1), 34–41.
                  9, 581–588.                   43. Al-Oqla, F.M. and Sapuan, S.M. (2014)
               33. Lin, S.,Guo,W., Chen,C., Ma,J., and
                                                  Natural fiber reinforced polymer com-
                  Wang, B. (2012) Mechanical proper-
                                                  posites in industrial applications:
                  ties and morphology of biodegradable
                                                  feasibility of date palm fibers for sus-
                  poly(lactic acid)/poly(butylene adipate-
                                                  tainable automotive industry. J. Cleaner
                  co-terephthalate) blends compatibilized
                                                  Prod., 66, 347–354.
                  by transesterification. Mater. Des., 36,
                                                44. Oksman, K., Skrifvars, M., and Selin,
                  604–608.
               34. Immanuel, V. and Meenakshi, K.S.  J.F. (2003) Natural fibres as rein-
                  (2011) Synthesis of carbon cloth by  forcement in polylactic acid (PLA)
                                                  composites. Compos.Sci.Technol., 63
                  controlled pyrolysis of rayon cloth for
                                                  (9), 1317–1324.
                  aerospace and advanced engineering
                                                45. Tran, T.P.T., Bénézet, J.-C., and Bergeret,
                  applications. Indian J. Sci. Technol., 4
                                                  A. (2014) Rice and Einkorn wheat husks
                  (7), 759–762.
               35. Loud, S.N. (1998) Handbook of Compos-  reinforced poly(lactic acid) (PLA) bio-
                  ites, Springer, pp. 931–956.    composites: effects of alkaline and silane
               36. Shen, L., Yang, H., Ying, J., Qiao, F.,  surface treatments of husks. Ind. Crops
                  and Peng, M. (2009) Preparation and  Prod., 58, 111–124.
                  mechanical properties of carbon fiber  46. Ndazi, B., Karlsson, S., Tesha, J., and
                  reinforced hydroxyapatite/polylactide  Nyahumwa, C. (2007) Chemical and
                  biocomposites. J. Mater. Sci. - Mater.  physical modifications of rice husks for
                  Med., 20 (11), 2259–2265.       use as composite panels. Composites
               37. Masuelli, M.A. (2013) Introduction of  Part A, 38 (3), 925–935.
                  Fiber-Reinforced Polymers – Polymers  47. Dash,B., Rana,A., Mishra,H., Nayak,
                  and Composites: Concepts, Properties  S., Mishra, S., and Tripathy, S. (1999)
                  and Processes. In tech, pp. 3–40.  Novel, low-cost jute-polyester com-
               38. Raquez,J.-M.,Habibi, Y.,Murariu,M.,  posites. Part 1: processing, mechanical
                  and Dubois, P. (2013) Polylactide (PLA)-  properties, and SEM analysis. Polym.
                  based nanocomposites. Prog. Polym.  Compos., 20 (1), 62–71.
                  Sci., 38 (10–11), 1504–1542.  48. Roe, P. and Ansell, M.P. (1985) Jute-
               39. Aragona, J., Parsons, J.R., Alexander, H.,  reinforced polyester composites. J.
                  and Weiss, A.B. (1983) Medial collateral  Mater. Sci., 20 (11), 4015–4020.
   354   355   356   357   358   359   360   361   362   363   364