Page 66 - Biodegradable Polyesters
P. 66

44  2 Functional (Bio)degradable Polyesters by Radical Ring-Opening Polymerization

                       combining high hydrophobicity with  47. Han, S.I., Yoo, Y., Kim, D.K., and Im, S.S.
                       degradability. J. Polym. Sci., Part A:  (2004) Biodegradable aliphatic polyester
                       Polym. Chem., 44, 1225.          ionomers. Macromol. Biosci., 4, 199.
                    40. Agarwa, S. and Kumar, R. (2011)  48. Han, S.I., Gu, B.H., Nam, K.H., Im,
                       Synthesis of high-molecular-weight  S.J., Kim, S.C., and Im, S.S. (2007)
                       Tulipalin-A-based polymers by simple  Novel copolyester-based ionomer for a
                       mixing and heating of comonomers.  shape-memory biodegradable material.
                       Macromol. Chem. Phys., 212, 603–612.  Polymer, 48, 1830.
                    41. Casadio, Y.S., Brown, D.H., Chirila,  49. Yoo, Y.T., Lee, B.J., Han, S.I., Im, S.S.,
                       T.V.,Kraatz, H.B.,and Baker, M.V.  and Kim, D.K. (2003) Physical properties
                       (2010) Biodegradation of poly(2-  and biodegradation of poly(butylene
                       hydroxyethyl methacrylate) (PHEMA)  adipate) ionomers. Polym. Degrad. Stab.,
                       and poly{(2-hydroxyethyl methacrylate)-  79, 257.
                       co-[poly(ethylene glycol) methyl ether  50. Han, S.I., Im, S.S., and Kim, D.K.
                       methacrylate]} hydrogels containing  (2003) Dynamic mechanical and melt
                       peptide-based cross-linking agents.  rheological properties of sulfonated
                       Biomacromolecules, 11, 2949.     poly(butylene succinate) ionomers.
                    42. Dziubla, T.D., Torjman, M.C., Joseph, J.,
                                                        Polymer, 44, 7165.
                       Murphy-Tatum, M., and Lowman, A.M.
                                                     51. Agarwal, S. and Ren, L. (2009)
                       (2001) Evaluation of porous networks
                                                        Polycaprolactone-based novel degrad-
                       of poly(2-hydroxyethyl methacrylate)
                                                        able ionomers by radical ring-opening
                       as interfacial drug delivery devices.  polymerization of 2-methylene-1,3-
                       Biomaterials, 22, 2893–2899.     dioxepane. Macromolecules, 42,
                    43. Zhang, Y., Chu, D., Zheng, M., Kissel, T.,
                                                        1574–1579.
                       and Agarwal, S. (2012) Biocompatible  52. Zhang, Y., Zheng, M., Kissel, T., and
                       and degradable poly(2-hydroxyethyl
                                                        Agarwal, S. (2012) Design and biophys-
                       methacrylate) based polymers for
                                                        ical characterization of bioresponsive
                       biomedical applications. Polym. Chem.,
                                                        degradable poly(dimethylaminoethyl
                       3, 2752.
                    44. (a) Avti, P.K., Maysinger, D., and Kakkar,  methacrylate) based polymers for in
                       A. (2013) Alkyne-azide “click” chem-  vitro DNA transfection. Biomacro-
                       istry in designing nanocarriers for  molecules, 13, 313–322.
                                                     53. Agarwal, S., Zhang, Y., Maji, S., and
                       applications in biology. Molecules, 18,
                                                        Greiner, A. (2012) PDMAEMA based
                       9531–9549; (b) Undin, J., Plikk, P.,
                                                        gene delivery materials. Mater. Today,
                       Finne-Wistrand, A., and Albertsson, A.
                                                        15, 388.
                       (2010) Synthesis of amorphous aliphatic
                       polyester-ether homo- and copolymers  54. Maji, S., Mitschang, F., Chen, L., Jin,
                       by radical polymerization of ketene  Q., Wang, Y., and Agarwal, S. (2012)
                       acetals. J. Polym. Sci., Part A: Polym.  Functional poly(dimethyl aminoethyl
                       Chem., 48, 4965–4973.            methacrylate) by combination of radical
                    45. Undin, J., Finne-Wistrand, A., and  ring-opening polymerization and click
                       Albertsson, A.C. (2013) Copolymeriza-  chemistry for biomedical applications.
                       tion of 2 methylene-1,3-dioxepane and  Macromol. Chem. Phys., 213, 1643.
                       glycidyl methacrylate, a well-defined and  55. Aseyev, V., Tenhu, H., and Winnik, F.M.
                       efficient process for achieving function-  (2011) Non-ionic thermoresponsive
                       alized polyesters for covalent binding of  polymers in water. Adv. Polym. Sci., 242,
                       bioactive molecules. Biomacromolecules,  29.
                       14, 2095.                     56. (a) Seuring, J. and Agarwal, S. (2012)
                    46. Maji, S., Zheng, M., and Agarwal, S.  Polymers with upper critical solution
                       (2011) Functional degradable polymers  temperature in aqueous solution. Macro-
                       via radical ring opening polymerization  mol. Rapid Commun., 33, 1898; (b)
                       and click chemistry. Macromol. Chem.  Seuring, J. and Agarwal, S. (2013)
                       Phys., 212, 2573.                Polymers with upper critical solution
   61   62   63   64   65   66   67   68   69   70   71