Page 66 - Biodegradable Polyesters
P. 66
44 2 Functional (Bio)degradable Polyesters by Radical Ring-Opening Polymerization
combining high hydrophobicity with 47. Han, S.I., Yoo, Y., Kim, D.K., and Im, S.S.
degradability. J. Polym. Sci., Part A: (2004) Biodegradable aliphatic polyester
Polym. Chem., 44, 1225. ionomers. Macromol. Biosci., 4, 199.
40. Agarwa, S. and Kumar, R. (2011) 48. Han, S.I., Gu, B.H., Nam, K.H., Im,
Synthesis of high-molecular-weight S.J., Kim, S.C., and Im, S.S. (2007)
Tulipalin-A-based polymers by simple Novel copolyester-based ionomer for a
mixing and heating of comonomers. shape-memory biodegradable material.
Macromol. Chem. Phys., 212, 603–612. Polymer, 48, 1830.
41. Casadio, Y.S., Brown, D.H., Chirila, 49. Yoo, Y.T., Lee, B.J., Han, S.I., Im, S.S.,
T.V.,Kraatz, H.B.,and Baker, M.V. and Kim, D.K. (2003) Physical properties
(2010) Biodegradation of poly(2- and biodegradation of poly(butylene
hydroxyethyl methacrylate) (PHEMA) adipate) ionomers. Polym. Degrad. Stab.,
and poly{(2-hydroxyethyl methacrylate)- 79, 257.
co-[poly(ethylene glycol) methyl ether 50. Han, S.I., Im, S.S., and Kim, D.K.
methacrylate]} hydrogels containing (2003) Dynamic mechanical and melt
peptide-based cross-linking agents. rheological properties of sulfonated
Biomacromolecules, 11, 2949. poly(butylene succinate) ionomers.
42. Dziubla, T.D., Torjman, M.C., Joseph, J.,
Polymer, 44, 7165.
Murphy-Tatum, M., and Lowman, A.M.
51. Agarwal, S. and Ren, L. (2009)
(2001) Evaluation of porous networks
Polycaprolactone-based novel degrad-
of poly(2-hydroxyethyl methacrylate)
able ionomers by radical ring-opening
as interfacial drug delivery devices. polymerization of 2-methylene-1,3-
Biomaterials, 22, 2893–2899. dioxepane. Macromolecules, 42,
43. Zhang, Y., Chu, D., Zheng, M., Kissel, T.,
1574–1579.
and Agarwal, S. (2012) Biocompatible 52. Zhang, Y., Zheng, M., Kissel, T., and
and degradable poly(2-hydroxyethyl
Agarwal, S. (2012) Design and biophys-
methacrylate) based polymers for
ical characterization of bioresponsive
biomedical applications. Polym. Chem.,
degradable poly(dimethylaminoethyl
3, 2752.
44. (a) Avti, P.K., Maysinger, D., and Kakkar, methacrylate) based polymers for in
A. (2013) Alkyne-azide “click” chem- vitro DNA transfection. Biomacro-
istry in designing nanocarriers for molecules, 13, 313–322.
53. Agarwal, S., Zhang, Y., Maji, S., and
applications in biology. Molecules, 18,
Greiner, A. (2012) PDMAEMA based
9531–9549; (b) Undin, J., Plikk, P.,
gene delivery materials. Mater. Today,
Finne-Wistrand, A., and Albertsson, A.
15, 388.
(2010) Synthesis of amorphous aliphatic
polyester-ether homo- and copolymers 54. Maji, S., Mitschang, F., Chen, L., Jin,
by radical polymerization of ketene Q., Wang, Y., and Agarwal, S. (2012)
acetals. J. Polym. Sci., Part A: Polym. Functional poly(dimethyl aminoethyl
Chem., 48, 4965–4973. methacrylate) by combination of radical
45. Undin, J., Finne-Wistrand, A., and ring-opening polymerization and click
Albertsson, A.C. (2013) Copolymeriza- chemistry for biomedical applications.
tion of 2 methylene-1,3-dioxepane and Macromol. Chem. Phys., 213, 1643.
glycidyl methacrylate, a well-defined and 55. Aseyev, V., Tenhu, H., and Winnik, F.M.
efficient process for achieving function- (2011) Non-ionic thermoresponsive
alized polyesters for covalent binding of polymers in water. Adv. Polym. Sci., 242,
bioactive molecules. Biomacromolecules, 29.
14, 2095. 56. (a) Seuring, J. and Agarwal, S. (2012)
46. Maji, S., Zheng, M., and Agarwal, S. Polymers with upper critical solution
(2011) Functional degradable polymers temperature in aqueous solution. Macro-
via radical ring opening polymerization mol. Rapid Commun., 33, 1898; (b)
and click chemistry. Macromol. Chem. Seuring, J. and Agarwal, S. (2013)
Phys., 212, 2573. Polymers with upper critical solution