Page 64 - Biodegradable Polyesters
P. 64
42 2 Functional (Bio)degradable Polyesters by Radical Ring-Opening Polymerization
polymerization. Adv. Drug Delivery Rev., copolymers of 5,6 benzo-2-methylene-
60 (9), 1056. 1,3-dioxepane and styrene. Macro-
6. Labet, M. and Thielemans, W. (2009) molecules, 36, 6152.
Synthesis of polycaprolactone: a review. 16. Bailey, W.J., Chou, J.L., Feng, P.Z.,
Chem. Soc. Rev., 38 (12), 3484. Kuruganti, V., and Zhou, L.L. (1988)
7. Williams, C. (2007) Synthesis of func- Recent advances in free radical ring-
tionalized biodegradable polyesters. opening polymerization. Acta Polym., 39,
Chem. Soc. Rev., 36, 1573. 335.
8. Papageorgiou, G.Z., Achilias, D.S., 17. Agarwal, S. (2007) Microstructural char-
and Bikiaris, D.N. (2009) Crys- acterisation and properties evaluation
tallization kinetics and melting of poly(methyl methacrylate-co-ester)s.
behaviour of the novel biodegradable Polym. J., 39, 163.
polyesters poly(propylene azelate) and 18. Bailey, W.J., Ni, Z., and Wu, S.R. (1982)
poly(propylene sebacate). Macromol. Synthesis of poly-ε-caprolactone via
Chem. Phys., 210, 90. a free radical mechanism. Free rad-
9. Su, J., Chen, Y., and Tan, L. (2009) ical ring-opening polymerization of
Preparation and hydrolytic degradation 2-methylene-1,3-dioxepane. J. Polym. Sci.
of poly(hexylene terephthalate-co-lactide) Polym. Chem., 20, 3021.
co-polyesters from melting polyconden- 19. Jin, S. and Gonsalves, K.E. (1997) A
sation. J. Biomater. Sci., 20, 99. study of the mechanism of the free-
10. Lavilla, C., Alla, A., radical ring opening polymerization
Martínez de Ilarduya, A., and of 2-methylene-1,3-dioxepane. Macro-
Muñoz-Guerra, S. (2013) High T bio molecules, 30, 3104.
g
based aliphatic polyesters from bicyclic 20. Bailey, W.J., Wu, S.R., and Ni, Z. (1982)
d-Mannitol. Biomacromolecules, 14 (3), Synthesis and free radical ring-opening
781. polymerization of 2-methylene-4-phenyl-
11. Bailey, W.J., Chen, P.Y., Chiao, W.B., 1,3-dioxolane. Makromol. Chem., 183,
Endo, T., Sidney, L., Yamamoto, N., 1913.
Yamazaki, N., and Yonezawa, K. (1979) 21. Agarwal, S. and Speyere, C. (2010) De-
Free-radical ring-opening polymer- gradable blends of semi-crystalline and
ization. Contemp. Top. Polym. Sci., 3, amorphous branched poly(caprolactone):
29. effect of microstructure on blend prop-
12. Agarwal, S. (2010) Chemistry, chances erties. Polymer, 51 (5), 1024–1032.
and limitations of the radical ring- 22. (a) Yokozawa, T., Hayashi, R., and
opening polymerization of cyclic ketene Endo, T. (2003) Preparation and rad-
acetals for the synthesis of degradable ical ring-opening polymerization of
polyesters. Polym. Chem., 1, 953–964. exo-methylene substituted cyclic ketene
13. (a) Liu, Y., Keller, C.E., and Pittman, acetals. J. Polym. Sci., Part A: Polym.
C.U. Jr., (2000) Cationic 1,2-vinyl addi- Chem., 28, 3739; (b) Bailey, W.J., Ni,
tion polymerization of cyclic ketene Z., and Wu, S.R. (1982) Free radical
acetals initiated by conventional acids. ring opening polymerization of 4,7-
J. Polym. Sci.,PartA:Polym.Chem., 35 dimethyl-2-methylene-1,3-dioxepane and
(17), 3707–3716; (b) Cao, L., Wu, Z., 5,6-benzo-2 methylene-1,3-dioxepane.
and Pittman, C.U. Jr., (2000) Relative Macromolecules, 15, 711; (c) Liu,
reactivities of cyclic ketene acetals via W., Mikes, F., Guo, Y., Koike, Y., and
cationic 1,2-vinyl addition copolymer- Okamoto, Y. (2004) Free-radical poly-
ization. J. Polym. Sci., Part A: Polym. merization of dioxolane and dioxane
Chem., 37 (15), 2841. derivatives: effect of fluorine substituents
14. McElvain, S. and Curry, M. (1948) on the ring opening polymerization. J.
Ketene acetals. XIX. 2-methylene-1,3- Polym. Sci.,PartA:Polym.Chem., 42,
dioxolanes and 1,3-dioxanes. J. Am. 5180.
Chem. Soc., 70, 3781. 23. (a) Cho, I. and Kim, S.K. (1990)
15. Wickel, H. and Agarwal, S. (2003) Exploratory ring-opening polymer-
Synthesis and characterization of ization: ring-opening polymerization of