Page 67 - Biodegradable Polyesters
P. 67

References  45

                  temperature in aqueous solution: unex-  and biodegradable hydrogels. Macromol.
                  pected properties from known building  Biosci., 3, 725.
                  blocks. ACS Macro Lett., 2, 597–600.  63. Sun, T.M., Du, J.Z., Yan, L.F., Mao, H.Q.,
               57. Hales, M., Barner-Kowollik, C., Davis,  and Wang, J. (2008) Self-assembled
                  T.P., and Stenzel, M.H. (2004) Shell-  biodegradable micellar nanoparticles of
                  cross-linked vesicles synthesized from  amphiphilic and cationic block copoly-
                  block copolymers of poly(D,L-lactide)  mer for siRNA delivery. Biomaterials,
                  and poly(N-isopropyl acrylamide) as  29, 4348.
                  thermoresponsive nanocontainers.  64. Zhang, Y.L., Dou, X.W., and Jin, T.
                  Langmuir, 20 (25), 10809.       (2010) Synthesis and self-assembly
               58. Xu, F.J., Li, J., Yuan, S.J., Zhang, Z.X.,  behavior of amphiphilic diblock copoly-
                  Kang, E.T., and Neoh, K.G. (2008)  mer dextran-block-poly(ε-caprolactone)
                  Thermo responsive porous membranes  (DEX-b-PCL) in aqueous media.
                  of controllable porous morphology from  eXPRESS Polym. Lett., 4, 599.
                  triblock copolymers of polycaprolac-  65. Gheybi, H. and Entezami, A.A. (2013)
                  tone and poly(N-isopropylacrylamide)  Nanosized micelles self-assembled from
                  prepared by atom transfer radical poly-  amphiphilic poly(citric acid)–poly(ε-
                  merization. Biomacromolecules, 9, 331.  caprolactone)–poly(citric acid) copoly-
               59. Lutz,J.F., Andrieu, J.,Üzgün,S.,  mers. Polym. Bull., 70, 1875.
                  Rudolph, C., and Agarwal, S. (2007)  66. Ohya, Y., Takahashi, A., and Nagahama,
                  Biocompatible, thermoresponsive,  K. (2012) Biodegradable polymeric
                  and biodegradable: simple prepara-  assemblies for biomedical materials. Adv.
                  tion of “all-in-one” biorelevant polymers.  Polym. Sci., 247, 65.
                  Macromolecules, 40, 8540.    67. Jin, Q., Maji, S., and Agarwal, S. (2012)
               60. Ren, L. and Agarwal, S. (2007) Synthesis,  Novel amphiphilic, biodegradable, bio-
                  characterization, and properties evalua-  compatible, cross-linkable copolymers:
                  tion of P poly[(N-isopropylacrylamide)-  synthesis, characterization and drug
                  co-ester]s. Macromol. Chem. Phys., 208,  delivery applications. Polym. Chem., 3,
                  245.                            2785.
               61. Siegwart, D.J., Bencherif, S.A.,  68. Xiao, N., Liang, H., and Lu, J. (2011)
                  Srinivasan, A., Hollinger, J.O., and  Degradable and biocompatible aldehyde-
                  Matyjaszewski, K. (2008) Synthesis,  functionalized glycopolymer conjugated
                  characterization, and in vitro cell cul-  with doxorubicin via acid-labile Schiff
                  ture viability of degradable poly(N  base linkage for pH triggered drug
                  isopropylacrylamide-co-5,6-benzo-  release. Soft Matter, 7, 10834.
                  2-methylene-1,3-dioxepane)-based  69. Grabe, N., Zhang, Y., and Agarwal, S.
                  polymers and crosslinked gels. J. Biomed.  (2011) Degradable elastomeric block
                  Mater. Res. A, 87A (2), 345.    copolymers based on polycaprolactone
               62. Sun, L.F., Zhuo, R.X., and Liu, Z.L.  by free-radical chemistry. Macromol.
                  (2003) Studies on the synthesis and  Chem. Phys., 212, 1327.
                  properties of temperature responsive
   62   63   64   65   66   67   68   69   70   71   72