Page 130 - Biomedical Engineering and Design Handbook Volume 1, Fundamentals
P. 130

RESPIRATORY MECHANICS AND GAS EXCHANGE  107

                          10. Espinosa, F. F., and R. D. Kamm, “Bolus dispersal through the lungs in surfactant replacement therapy,”
                            J. Appl. Physiol., 86:391–410, 1999.
                          11. Everett, D. H., and J. M. Haynes, “Model studies of capillary condensation: 1. Cylindrical pore model with
                            zero contact angle,” J. Colloid, Inter. Sci., 38:125–137, 1972.
                          12. Forgacs, P., “Functional basis of pulmonary sounds,” Chest, 73:399–405, 1978.
                          13. Gavriely, N., K. B. Kelly, J. B. Grotberg, and S. H. Loring, “Forced expiratory wheezes are a manifestation
                            of airway flow limitation,” J. Appl. Physiol., 62:2398–2403, 1987.
                          14. Godleski, D. A., and J. B. Grotberg, “Convection-diffusion interaction for oscillatory flow in a tapered tube,”
                            Journal of Biomechanical Engineering—Transactions of ASME, 110:283–291, 1988.
                          15. Grotberg, J. B., and S. H. Davis, “Fluid-dynamic flapping of a collapsible channel: sound generation and
                            flow limitation,” J. Biomech. Eng., 13:219–230, 1980.
                          16. Grotberg, J. B., and N. Gavriely, “Flutter in collapsible tubes: a theoretical model of wheezes,” J. Appl.
                            Physiol., 66:2262–2273, 1989.
                          17. Haber, R., J. B. Grotberg, M. R. Glucksberg, G. Miserocchi, D. Venturoli, M. D. Fabbro, and C. M. Waters,
                            “Steady-state pleural fluid flow and pressure and the effects of lung buoyancy,”  J. Biomech. Eng.,
                            123:485–492, 2001.
                          18. Halpern, D., O. E. Jensen, and J. B. Grotberg, “A theoretical study of surfactant and liquid delivery into the
                            lung,” J. Appl. Physiol., 85:333–352, 1998.
                          19. Isabey, D., and H. K. Chang, “Steady and unsteady pressure-flow relationships in central airways,” J. Appl.
                            Physiol., 51:1338–1348, 1981.
                          20. Jordanog, J., “Vector analysis of rib movement,” Respir. Physiol., 10:109, 1970.
                          21. Kamm, R. D., and R. C. Schroter, “Is airway closure caused by a thin liquid instability?” Respir. Physiol.,
                            75:141–156, 1989.
                          22. Knowles, J. H., S. K. Hong, and H. Rahn, “Possible errors using esophageal balloon in determination of
                            pressure-volume characteristics of the lung and thoracic cage,” J. Appl. Physiol., 14:525–530, 1959.
                          23. Lambert, R. K., and T. A. Wilson, “Flow limitation in a collapsible tube,” Journal of Applied Physiology,
                            33:150–153, 1972.
                          24. Lunkenheimer, P. P., W. Rafflenbeul, H. Kellar, I. Frank, H. H. Dickhut, and C. Fuhrmann, “Application of
                            tracheal pressure oscillations as a modification of ‘Diffusional Respiration’,” Br. J. Anaesth., 44:627, 1972.
                          25. Macklem, P. T., D. F. Proctor, and J. C. Hogg. The stability of peripheral airways. Respir. Physiol. 8:191–203,
                            1970.
                          26. Mead, J., J. L. Whittenberger, and E. P. Radford, Jr., “Surface tension as a factor in pulmonary volume-
                            pressure hysteresis,” J. Appl. Physiol., 10:191–196, 1957.
                          27. Otis, A. B., C. B. McKerrow, R. A. Bartlett, J. Mead, M. B. Mcllroy, N. J. Selverstone, and E. P. Radford,
                            “Mechanical factors in distribution of pulmonary ventilation,” J. Appl. Physiol., 8:427–443, 1956.
                          28. Pedley, T. J., R. C. Schroter, and M. F. Sudlow, “The prediction of pressure drop and variation of resistance
                            within the human bronchial airways,” Respir. Physiol., 9:387–405, 1970.
                          29. Permutt, S., and R. L. Riley, “Hemodynamics of collapsible vessels with tone—vascular waterfall,” J. Appl.
                            Physiol., 18:924, 1963.
                          30. Shapiro, A. H., “Steady flow in collapsible tubes,” J. Biomech. Eng., 99:126–147, 1977.
                          31. Slutsky, A. S., G. G. Berdine, and J. M. Drazen, “Steady flow in a model of human central airways,” J. Appl.
                            Physiol., 49:417–423, 1980.
                          32. Suki, B., F. Petak, A. Adamicza, Z. Hantos, and K. R. Lutchen, “Partitioning of airway and lung-tissue
                            properties—comparison of in-situ and open-chest conditions,” J. Appl. Physiol., 79:861–869, 1995.
                          33. Taylor, G. I., “Dispersion of solute matter in solvent flowing through a tube,”  Proc. Roy. Soc. Lond.,
                            A291:186–203, 1953.
                          34. Von Neergaard, K., “Neue Auffassungen über einen Grundbegriff der Atemmechanik. Die Retraktionskraft
                            der Lunge, abhängig von der Oberflächenspannung in den Alveolen,” Z. Gesampte Exp. Med., 66:373–394,
                            1929.
                          35. Weibel, E. R., Morphometry of the human lung, New York: Academic Press, p. 151, 1963.
   125   126   127   128   129   130   131   132   133   134   135