Page 229 - Biomedical Engineering and Design Handbook Volume 1, Fundamentals
P. 229

206  BIOMECHANICS OF THE HUMAN BODY

                       Substitution of Eqs. (8.38), (8.43), and (8.44) into Eq. (8.42) yields
                                                          b + Ω sinθ
                                                                  b + θ
                                      v  =− l Ω b + − Ω(  cosθ 1 1  1 2    1 3  l 3  b 1  (8.45)
                                                                        b ×)
                                            2
                                               3
                                                                            2
                                       G 1
                       which is solved to be
                                                  l 3       l ⎛ sin θ  ⎞
                                                      b − Ω
                                              v  =  θ 12    3   1  +  l 2  b 3            (8.46)
                                               G 1         ⎝        ⎠
                                                   2          2
                       Therefore, Eq. (8.41) can be written by using Eqs. (8.38), (8.39), (8.40), and (8.46):
                                                                                      2
                                 1 1    2  2  2   1   2 2⎞  1  ⎧  l l ⎛ ⎪  3   ⎞  2  ⎡  l ⎛ sin θ  ⎞ ⎤ ⎪ ⎫
                                  ⎛

                              T =    m l Ω sin θ 1  +  m l θ  +  m ⎨  θ 1  +− Ω  3  1  l +  2 ⎥  ⎬ ⎬  (8.47)
                                       1 3
                                                     1 3 1
                               1
                                  ⎝
                                                             1
                                 2 12            12     ⎠  2  ⎩ ⎪ ⎝  2  ⎠  ⎢ ⎣  ⎝  2  ⎠ ⎦ ⎪ ⎭
                       and simplified to the final form of the kinetic energy for the system:
                                       1               2    1  2 2    1  2 l sinθ  ⎞  2
                                                                       ⎛
                                           2
                                                 2
                                              2
                                                                     Ω
                                   T =   m l (Ω sin θ 1  + θ 1) +  m l θ  +  m Ω  3  1  + l 2  (8.48)
                                                                    1
                                          1 3
                                    1
                                                            13 1
                                       24                 8       2    ⎝  2     ⎠
                       The potential energy of the system is simply
                                                            l
                                                    V =−  m g  3  cosθ 1                  (8.49)
                                                          1
                                                     1
                                                            2
                       The Lagrangian for segment BC, L , is subsequently determined to be
                                                1
                                               1              2    1  2 2
                                                      2
                                                   2
                                                         2
                                           L =  m l (Ω sin θ 1  + θ 1) +  m l θ
                                                  1 3
                                            1
                                                                    13 1
                                              24                 8
                                                     ⎛
                                                1   2 l sinθ  ⎞  2   l
                                                   Ω
                                              +  m Ω   3   1  l +  2  +  m g  3  cosθ 1   (8.50)
                                                                   1
                                                  1
                                                2    ⎝  2     ⎠      2
                       Applying Lagrange’s equation (8.11) and using the only generalized coordinate for this system, θ ,
                                                                                             1
                                                        q =θ                              (8.51)
                                                         1   1
                       each term of Eq. (8.11) can easily be identified by differentiation of Eq. (8.50). The derivative of L
                                                                                              1
                       with respect to θ is solved accordingly:
                                   1
                                        ∂L   1                1
                                                   2
                                                                  2
                                                 2
                                                                    2
                                          1  =  ml Ω sin θ cos θ  + ml Ω sin θ coosθ
                                        ∂θ 1  12  13   1    1  4  1 3   1   1
                                              1      2      1
                                             + ml l Ω  cosθ − m gl 3  sinθ 1              (8.52)
                                                              1
                                                         1
                                                12 3
                                              2             2
                       which reduces to
                                         1
                                                          1
                                     ∂L 1  = ml Ω sin θ cos θ  + ml l Ω cos θ  − mgl sinθ
                                                                       1 1
                                             2
                                                                 2
                                               2
                                     ∂θ  3  13     1   1  2  1 2 3   1  2  1  3  1        (8.53)
                                      1
                       The derivative of L with respect to θ    is
                                    1             1
                                                          1
                                             ∂L 1  =  1  ml θ  + ml θ  = ml θ
                                                                  1
                                                      2
                                                              2
                                                                      2
                                             ∂θ   1  12  13 1  4  1 3 1  3  1 3 1         (8.54)
   224   225   226   227   228   229   230   231   232   233   234