Page 232 - Biomedical Engineering and Design Handbook Volume 1, Fundamentals
P. 232

BIODYNAMICS: A LAGRANGIAN APPROACH  209

                                               c 1  cos(θ 2  − θ 1 )  sin(θ 2  − θ 1 )  0 b 1
                                               c = −sin(θ  − θ  ) cos(θ −  θ )  0 b          (8.68)
                                                                 θ
                                                2       2  1      2  1     2
                                               c 3     0          0     1 b 3
                          From Eq. (8.68), the velocity at point G becomes
                                                       2


                                                                             θ
                                          v  =  l θ sin( θ  − θ ) c +  ⎡ l θ cos( θ  − θ ) +  l 4   ⎤  c
                                           G 2  31   2  1  1  ⎢ ⎣  31  2  1  2  2 2 ⎥ ⎦  2
                                                ⎡                 l 4    ⎤
                                               − Ω( sinl  θ  + )l  + Ωl  +  Ωsinθ  c         (8.69)
                                                ⎢ ⎣  3  1  2  2   2     2 ⎥ ⎥ ⎦  3
                          Substituting Eqs. (8.61), (8.62), and (8.69) into Eq. (8.63), the equation for the kinetic energy of
                          segment CD, and solving gives
                                          1   2 2    1               1   2 2
                                      T =  m l θ  +  m l l θ θ cos( θ  2  − θ )  +  m l θ
                                                                  1
                                                     234 1 2
                                                                        2 24 2
                                       2
                                             2 3 1
                                          2       2                  6
                                           1   2  2  2   1      2               2
                                          +  ml Ω sin  θ +  ml l Ω sin θ sinθ + mll Ω  sinθ 1
                                                                      n
                                                           2 3 4
                                                                        2
                                                      1
                                              23
                                                                    1
                                                                            2 2 3
                                           2             2
                                           1   2  2  1     2      1  2  2  2
                                          + ml Ω  + m l l Ω  sinθ + ml Ω sin θ               (8.70)
                                           2  12    2  224     2 2  6  2 4   2
                          and the potential energy of segment CD is determined to be
                                                                    l 4
                                                  V =− m gl cosθ  −  m g  cosθ               (8.71)
                                                   2    2  3  1   2      2
                                                                    2
                          The total kinetic and potential energy of the system can be determined by summation of
                                                          T = T + T                          (8.72)
                                                              1  2
                          and                            V = V + V                           (8.73)
                                                              1  2
                          respectively, where the Lagrangian for the system is given by
                                                  L = (T + T ) − (V + V ) = T − V            (8.74)
                                                      1   2    1  2
                          It is left to the reader to apply Lagrange’s equation (8.11), using the two generalized coordinates of
                          the two-segment system, q =θ and q =θ , to work through the mathematics involved in solving
                                             1   1    2  2
                          Eq. (8.11) to yield the equations of motion. For the first generalized coordinate, q =θ , the equation
                                                                                    1  1
                          of motion is solved to be
                                     1       2     1                1
                                                                            2
                                            )l θ
                                    ( m + m 2 3 1  +  m l l  cos(θ 2  − θ 1 )θ  2  −  ( m +  m l ) Ω 2  sinθ 1  cosθ 1
                                                                     m
                                                    2 3 4
                                                                      1
                                       1
                                                                          2 3
                                     3           2                  3
                                        1           2      1
                                                         +
                                      − (  m +  m l l Ω  cosθ +  ml l θθ sin θ cos θ 2
                                               )
                                           1
                                              2
                                                             234 1 2
                                                                       1
                                                2 3
                                                        1
                                        2                  2
                                        1           2            1
                                                   Ω
                                      −  ml l θθ(  + Ω )cosθ  sinθ +  ( m  + m  )gl  sinθ =  0  (8.75)
                                        2  234  1 2      1   2   2  1  2  3   1
                          For the second generalized coordinate, q =θ , the equation of motion is solved to be
                                                       2   2
                                        1   2     1                1
                                         ml θ +  ml l cos( θ −  θ θ +  ml l θθ cos θ sin θ 2
                                                              )
                                                               1
                                                   2 34
                                                          2
                                           24 2
                                                             1
                                                                              2
                                                                     2 34 12
                                        3       2                 2
                                           1            2           1   2  2
                                          −  ml l  ( θθ + Ω  )sin θ coosθ − ml Ω  sinθ 2 cosθ 2
                                                                      2 4
                                                  1 2
                                                             1
                                              234
                                                                 2
                                           2                        3
                                           1      2       1
                                          −  mll Ω  cosθ +  mgl sinθ=  0                     (8.76)
                                              224
                                                                   2
                                                              4
                                                       2
                                                            2
                                           2              2 2
   227   228   229   230   231   232   233   234   235   236   237