Page 236 - Biomedical Engineering and Design Handbook Volume 1, Fundamentals
P. 236

BIODYNAMICS: A LAGRANGIAN APPROACH  213

                          TABLE 8.2  Kinematics Table for the Single Rigid Body in an Inertial Coordinate System
                                                    i                   j                 k
                              ω                     0                   0                 0
                               B
                            α =ω .                  0                   0                 0
                             B   B
                           r GB  =  r            r sinθ              −r cosθ              0
                             /
                             1   G 1              G 1  1              G 1   1
                              v                     0                   0                 0
                               B


                            v  =  r             r θ cos θ            r θ sin θ            0
                             G 1  G 1            G 1 1  1            G 1 1  1
                            ω × r G 1               0                   0                 0
                             Β
                              a                     0                   0                 0
                               B


                            a  =  r            r θ cos θ           r θ sin θ              0
                             G 1  G 1           G 1 1  1            G 1 1  1


                                                    2
                                                                        2
                                               −  r θ sin θ         +  r θ cos θ
                                                 G 1 1  1            G 1 1   1
                            α × r G 1               0                   0                 0
                             B
                          ω × ( ω × r G 1 )         0                   0                 0
                           Β
                                Β
                           2ω ×   r G 1             0                   0                 0
                              Β
                          in the i, j, k and b , b , b frame of references, respectively. In applying either form of Eq. (8.77),
                                            3
                                          2
                                       1
                          the kinetic energy of the arm is found to be
                                                1         1    2    1  2   2  1  2
                                             T =  mv  • v  +  I θ  =  mr θ  +  I θ   2       (8.79)
                                                                           G 1 1
                                                                    G 1 1
                                                            G 1 1
                                                2  G 1  G 1  2   2       2
                          The gravitational potential energy of the arm is
                                                       V =− mgr cosθ                         (8.80)
                                                              G 1  1
                          TABLE 8.3 Kinematics Table for the Single Rigid Body in a Body-Fixed Coordinate System
                                                   b = e              b = e              b
                                                    1  r               2  θ               3
                              ω                      0                  0                  θ
                               B                                                          1
                            α =    Β                 0                  0                   θ 1
                                ω
                             B
                            r GB  =  r              r                   0                0
                              /
                             1   G 1                 G 1
                              v                      0                  0                0
                               B
                            v  =  r                  0                  0                0
                             G 1  G 1

                            ω × r G 1                0                r θ                0
                             Β
                                                                       G 1 1
                              a                      0                  0                0
                               B
                            a  =  r                  0                  0                0
                             G 1  G 1

                            α × r G 1                0                r θ                0
                             B
                                                                       G 1 1
                                                       2
                          ω × ( ω × r G 1 )        −r θ                 0                0
                           Β
                                                    G 1 1
                                Β
                            2ω ×   r G               0                  0                0
                              Β
                                  1
   231   232   233   234   235   236   237   238   239   240   241