Page 197 - Calculus Demystified
P. 197

CHAPTER 6
                                                                    Transcendental Functions
                     184
                                                                √
                                                                   2       π
                                                        Sin −1  −     =− .
                                                                  2        4
                                                                                  √
                                   Notice that even though the sine function takes the value 3/2 at many different
                                   values of the variable x, the function Sine takes this value only at x = π/3.
                                   Similar comments apply to the other two examples.
                                     We also have
                                                                √
                                                                    3    5π
                                                        Cos −1  −      =    ,
                                                                   2      6
                                                                         π
                                                                   −1
                                                               Cos   0 =   ,
                                                                          2
                                                                  √
                                                                    2    π
                                                          Cos −1       =   .
                                                                   2      4
                                  We calculate the derivative of f(t) = Sin −1 t by using the usual trick for inverse
                               functions. The result is
                                             d     −1               1               1
                                               (Sin  (x)) =                   = √       .
                                             dx               1 − sin (Sin −1 x)  1 − x 2
                                                                    2
                               The derivative of the function Cos −1 t is calculated much like that of Sin −1 t. We
                               find that
                                                      d      −1            1
                                                        (Cos   (x)) =−√        .
                                                      dx                 1 − x 2
                                   EXAMPLE 6.36
                                   Calculate the following derivatives:

                                      d                 d   −1  2             d    −1  1
                                             x
                                        Sin −1      ,     Sin  (x + x)    ,     Sin             .
                                     dx          √     dx                     dx       x      √
                                              x= 2/2                  x=1/3                x=− 3
                                   SOLUTION
                                     We have

                                          d                     1             √
                                            Sin −1    √   = √               =   2,
                                                 x
                                                                        √
                                         dx        x= 2/2      1 − x 2    x= 2/2


                                    d    −1     2                   1                         15
                                      Sin    x + x        =                 · (2x + 1)     = √   ,
                                    dx                               2    2                    65
                                                     x=1/3     1 − (x + x)
                                                                                     x=1/3


                                       d    −1                    1           1               1
                                         Sin  (1/x)       =              · −             =−√ .
                                      dx             x=− 3     1 − (1/x) 2    x 2    x=− 3     6
                                                       √
                                                                                      √
   192   193   194   195   196   197   198   199   200   201   202