Page 198 - Calculus Demystified
P. 198

CHAPTER 6
                                      Transcendental Functions
                                                        2
                     You Try It: Calculate (d/dx)Cos −1 [x + x]. Also calculate (d/dx)Sin −1 ×   185
                             3
                     [ln x − x ].
                         EXAMPLE 6.37
                         Calculate each of the following derivatives:

                              d                d    −1             d     −1  √
                                     x
                               Cos −1      ,     Cos  (ln x)    ,    Cos   ( x)     .
                             dx               dx              √    dx
                                       x=1/2               x= e                 x=1/2
                         SOLUTION
                           We have

                                d                      1               2
                                        x
                                  Cos −1       =− √               =−√ ,
                               dx          x=1/2      1 − x 2    x=1/2  3


                             d    −1                     1         1            −2
                               Cos  (ln x)     =−               ·          =−√      ,
                            dx             x= e      1 − (ln x) 2  x   x= e      3e
                                            √
                                                                        √


                             d    −1  √                  1        1
                               Cos  ( x)       =−         √     ·   x −1/2      =−1.
                            dx                                2   2
                                          x=1/2      1 − ( x)
                                                                           x=1/2
                     You Try It: Calculate (d/dx) ln[Cos −1 x] and (d/dx) exp[Sin −1 x].
                     6.6.3     THE INVERSE TANGENT FUNCTION
                     Define the function Tan x to be the restriction of tan x to the interval (−π/2,π/2).
                     Observe that the tangent function is undefined at the endpoints of this interval.
                     Since
                                                  d           2
                                                    Tan x = sec x
                                                 dx
                     we see that Tan x is increasing, hence it is one-to-one (Fig. 6.19). Also Tan takes
                     arbitrarily large positive values when x is near to, but less than, π/2.And Tan takes
                     negative values that are arbitrarily large in absolute value when x is near to, but
                     greater than, −π/2.ThereforeTan takes all real values. SinceTan : (−π/2,π/2) →
                     (−∞, ∞) is one-to-one and onto, the inverse function Tan −1  : (−∞, ∞) →
                     (−π/2,π/2) exists. The graph of this inverse function is shown in Fig. 6.20. It
                     is obtained by the usual procedure of reflecting in the line y = x.
                         EXAMPLE 6.38

                         Calculate
                                                        √           √
                                           −1       −1          −1
                                       Tan   1,  Tan  1/ 3,  Tan   (− 3).
   193   194   195   196   197   198   199   200   201   202   203