Page 202 - Calculus Demystified
P. 202

Transcendental Functions
                     CHAPTER 6
                     6.6.5     OTHER INVERSE TRIGONOMETRIC FUNCTIONS                             189
                     The most important inverse trigonometric functions are Sin −1 , Cos −1 , and Tan −1 .
                     We say just a few words about the other three.
                        Define Cot x to be the restriction of the cotangent function to the interval (0,π)
                     (Fig. 6.21). Then Cot is decreasing on that interval and takes on all real values.
                     Therefore the inverse
                                            Cot −1  : (−∞, ∞) → (0,π)



                                           y







                                                y = Cot x




                                                                       x










                                                    Fig. 6.21


                     is well defined. Look at Fig. 6.22 for the graph. It can be shown that
                                               d    −1         1
                                                 Cot   x =−        .
                                              dx             1 + x 2


                        Define Sec x to be the function sec x restricted to the set [0,π/2) ∪ (π/2,π]
                     (Fig. 6.23). Then Sec x is one-to-one. For these values of the variable x, the cosine
                     function takes all values in the interval [−1, 1] except for 0. Passing to the recip-
                     rocal, we see that secant takes all values greater than or equal to 1 and all values
                     less than or equal to −1. The inverse function is

                                  Sec −1  : (−∞, −1]∪[1, ∞) →[0,π/2) ∪ (π/2,π]
   197   198   199   200   201   202   203   204   205   206   207