Page 201 - Calculus Demystified
P. 201

188     EXAMPLE 6.40   CHAPTER 6         Transcendental Functions
                                   Evaluate the integral
                                                                sin x   dx.
                                                              1 + cos x
                                                                    2
                                   SOLUTION
                                     For clarity we set ϕ(x) = cos x, ϕ (x) =− sin x. The integral becomes



                                                           −     ϕ (x) dx  .
                                                                1 + ϕ (x)
                                                                     2
                                   By what we have just learned about Tan −1 , this last integral is equal to
                                                                −1
                                                           −Tan   ϕ(x) + C.
                                   Resubstituting ϕ(x) = cos x yields that
                                                      sin x
                                                          2  dx =−Tan  −1 (cos x) + C.
                                                    1 + cos x
                               You Try It: Calculate     x/(1 + x )dx.
                                                              4

                                   EXAMPLE 6.41     TEAMFLY
                                   Calculate the integral
                                                                 3x 2
                                                               √ 1 − x 6  dx.

                                   SOLUTION                  3           2
                                     For clarity we set ϕ(x) = x , ϕ (x) = 3x . The integral then becomes
                                                                ϕ (x) dx

                                                                1 − ϕ (x) .
                                                                     2

                                   We know that this last integral equals
                                                            Sin −1 ϕ(x) + C.

                                   Resubstituting the formula for ϕ gives a final answer of
                                                       √  3x 2  dx = Sin −1 (x ) + C.
                                                                           3
                                                        1 − x 6

                               You Try It: Evaluate the integral

                                                                √ xdx   .
                                                                  1 − x 4







                                                         Team-Fly
                                                                  ®
   196   197   198   199   200   201   202   203   204   205   206