Page 294 - Calculus Demystified
P. 294

Chapter 3










                                                    Fig. S3.2                                    281

                            The roots of this equation are h = 2, 6. Of course height 6 gives a trivial
                            cylinder, as does height 0. We find that the solution of our problem is height
                            2, radius 2.
                        3. We know that
                                                      V =   · w · h
                            hence
                                     dV    d             dw             dh
                                         =    · w · h +   ·  · h +   · w ·
                                      dt    dt            dt            dt
                                         = 1 · 60 · 15 + 100 · (−0.5) · 15 + 100 · 60 · 0.3
                                         = 900 − 750 + 1800 = 1950 in/min.
                        4. We know that v 0 =−15. Therefore the position of the body is given by

                                                            2
                                                p(t) =−16t − 15t + h 0 .
                            Since
                                                              2
                                            0 = p(5) =−16 · 5 − 15 · 5 + h 0 ,
                            we find that h 0 = 475. The body has initial height 475 feet.
                        5. We know that
                                                        1
                                                             2
                                                   V =   · πr · h.
                                                        3
                            Therefore
                                           d      1         dh   1         dr
                                                         2
                                       0 =   V =    · π · r ·  +   · π · 2r ·  · h.
                                           dt     3         dt   3         dt
                            At the moment of the problem, dh/dt = 3, r = 5, h = 12/(5π). Hence

                                                                     dr   12
                                                    2  2
                                            0 = π · 5 · 3 + π · (2 · 5) ·  ·
                                                                     dt  5π
   289   290   291   292   293   294   295   296   297   298   299