Page 291 - Calculus Demystified
P. 291

Solutions to Exercises
                                                                                         2
                                                                               2
                           278                               = lim  [−1/(1 + h) ]−[−1/1 ]
                                                                h→0            h
                                                                    −1 −[−(1 + h) ]
                                                                                  2
                                                             = lim      h(1 + h) 2
                                                                h→0
                                                                      2h + h 2
                                                             = lim        2    3
                                                                h→0 h + 2h + h
                                                                       2 + h
                                                             = lim            2
                                                                h→0 1 + 2h + h
                                                             = 2

                                             The derivative is therefore equal to 2.
                                             d    x      (x + 1) · 1 − x · 2x  1 − x 2
                                                           2
                                  4.    (a)  dx x + 1  =      (x + 1) 2     =  (x + 1) 2 .
                                                    TEAMFLY
                                                 2
                                                                2
                                                                                2
                                             d       2      d       2     d  2          2
                                        (b)  dx  sin(x ) =  dx  sin (x ) ·  dx  x  =[cos(x )]· 2x.
                                             d                 d            d
                                                                                              3
                                                                                                   2
                                                                                            2
                                                    3
                                                       2
                                                                                   2
                                                                                3
                                                                      3
                                                                         2
                                        (c)  dt  tan(t −t ) =  dt  tan (t −t )· dt  (t −t ) = sec (t − t ) ·
                                             (3t − 2t).
                                               2
                                             d    x − 1     (x + 1) · (2x) − (x − 1) · (2x)    4x
                                                              2
                                                                              2
                                                   2
                                        (d)        2      =             2     2           =   2     2 .
                                             dx   x + 1               (x + 1)               (x + 1)
                                        (e)  d  [x · ln(sin x)] = 1·ln(sin x)+x ·  cos x  = ln(sin x)+  x · cos x  .
                                             dx                              sin x              sin x
                                             d
                                        (f)  ds  e s(s+2)  = e s(s+2)  ·[1 · (s + 2) + s · 1]= e s(s+2)  ·[2s + 2].
                                             d      2        2   d                2
                                                                                          2
                                                                        2
                                        (g)  dx  e sin(x )  = e sin(x )  ·  dx  [sin(x )]= e sin(x )  · cos(x ) · 2x.
                                             
   x            1      x       e + 1
                                                                              x
                                        (h)  ln(e + x) =   e + x  · (e + 1) =  e + x  .
                                                            x
                                                                              x
                                  5.    (a)  Since the ball is dropped, v 0 = 0. The initial height is h 0 = 100.
                                             Therefore the position of the body at time t is given by
                                                                        2
                                                             p(t) =−16t + 0 · t + 100.
                                             The body hits the ground when
                                                                              2
                                                              0 = p(t) =−16t + 100
                                             or t = 2.5 seconds.
                                        (b)  Since the ball has initial velocity 10 feet/second straight down, we
                                             know that v 0 =−10. The initial height is h 0 = 100. Therefore the







                                                                  ®
                                                         Team-Fly
   286   287   288   289   290   291   292   293   294   295   296