Page 288 - Calculus Demystified
P. 288

Chapter 1
                              (d)  θ =−2π/3 radians                                              275
                                        2
                              (e)  θ = π /180 radians
                              (f)  θ = 157π/9000 radians
                                                    2 2
                                                                                    2
                                                                 2
                       17.    (a)  f ◦ g(x) =[(x − 1) ] + 2[(x − 1) ]+ 3; g ◦ f(x) = ([x + 2x +
                                         2
                                   3]− 1) .
                                             #                        #
                                                                       3  √
                                               3
                                                  2
                                                                                2
                              (b)  f ◦ g(x) =    x − 2 + 1; g ◦ f(x) =  [ x + 1] − 2.
                                                       2
                                                                        2
                                                                              2
                              (c)  f ◦ g(x) = sin([cos(x − x)]+ 3[cos(x − x)] ); g ◦ f(x) =
                                                                 2
                                                 2 2
                                   cos([sin(x + 3x )] −[sin(x + 3x )]).
                              (d)  f ◦ g(x) = e ln(x−5)+2 ; g ◦ f(x) = ln(e x+2  − 5).
                                                                                         2
                                                          2
                                                    2
                                                                 2
                              (e)  f ◦g(x) = sin([ln(x −x)] +[ln(x −x)]); g◦f(x) = ln([sin(x +
                                              2
                                     2
                                   x)] −[sin(x + x)]).
                                                                   2
                                                                   x
                              (f)  f ◦ g(x) = e [e −x  2  ] 2 ; g ◦ f(x) = e −[e ] 2 .
                              (g)  f ◦g(x) =[(2x −3)(x +4)]·[(2x −3)(x +4)+1]·[(2x −3)(x +
                                   4)+2]; g◦f(x) = (2[(x(x+1)(x+2)]−3)([(x(x+1)(x+2)]+4).
                       18.    (a)  f is invertible, with f  −1 (t) = (t − 5) 1/3 .
                              (b)  g is not invertible since g(0) = g(1) = 0.
                                                                   2
                              (c)  h is invertible, with h −1 (t) = sgn t · t .
                              (d)  f is invertible, with f  −1 (t) = (t − 8) 1/5 .
                              (e)  g is invertible, with g −1 (t) =−[ln t]/3.
                                                                            √
                              (f)  h is not invertible, since sin π/4 = sin 9π/4 =  2/2.
                              (g)  f is not invertible, since tan π/4 = tan 9π/4 = 1.
                                                                   √
                              (h)  g is invertible, with g −1 (x) = sgn x ·  |x|.
                       19. We will do (a), (c), (e), and (g).












                                                  Fig. S1.19(a)
   283   284   285   286   287   288   289   290   291   292   293