Page 292 - Calculus Demystified
P. 292

Chapter 2
                                   position of the body at time t is given by                    279
                                                              2
                                                  p(t) =−16t − 10 · t + 100.
                                   The body hits the ground when
                                                                 2
                                                 0 = p(t) =−16t − 10t + 100
                                   or t ≈ 2.207 seconds.
                              (c)  Since the ball has initial velocity 10 feet/second straight up, we
                                   know that v 0 = 10. The initial height is h 0 = 100. Therefore the
                                   position of the body at time t is given by
                                                              2
                                                  p(t) =−16t + 10 · t + 100.
                                   The body hits the ground when
                                                                 2
                                                 0 = p(t) =−16t + 10t + 100
                                   or t ≈ 2.832 seconds.
                                   d                                 1
                        6.    (a)     sin(ln(cos x)) = cos(ln(cos x)) ·  · (− sin x)
                                   dx                              cos x
                                                                   − sin x
                                                  = cos(ln(cos x)) ·     .
                                                                    cos x
                                   d   sin(cos x)  sin(cos x)
                              (b)     e       = e       · cos(cos x) · (− sin x).
                                   dx
                                   d                    1
                              (c)     ln(e sin x  + x) =     · (cos x + 1).
                                   dx               e sin x  + x
                                   d                            1
                                             2
                                                                                    2
                              (d)     arcsin(x + tan x) =                 ·[2x + sec x].
                                   dx                     1 −[x + tan x] 2
                                                                2
                                                                                    x
                                   d                             −1            1   e
                                                   x
                              (e)     arccos(ln x − e /5) =                  ·   −     .
                                                                       x
                                   dx                       1 −[ln x − e /5] 2  x   5
                                   d         2   x          1               x
                              (f)     arctan(x + e ) =              ·[2x + e ].
                                                            2
                                                                 x 2
                                   dx                 1 + (x + e )

                        7. Of course v(t) = p (t) = 12t − 5so v(4) = 43 feet/second. The average
                            velocity from t = 2to t = 8is
                                                 p(8) − p(2)   364 − 34
                                           v av =           =           = 55.
                                                      6            6
                            Thederivativeofthevelocityfunctionis(v ) (t) = 12.Thisderivativenever

                            vanishes, so the extrema of the velocity function on the interval [5, 10] occur
                            at t = 5 and t = 10. Since v(5) = 55 and v(10) = 115, we see that the
                            maximum velocity on this time interval is 115 feet per second at t = 10.
   287   288   289   290   291   292   293   294   295   296   297